

数 读书报告

张文雅

2018-10-14

Exosomes from Adipose-Derived Stem Cells Promotes VEGF-C-Dependent Lymphangiogenesis by Regulating miRNA-132/TGF-β Pathway

Xiaolei Wang^a Haichao Wang^a Jingli Cao^b Chen Ye^c

目录

01 研究背景

02 材料方法

03 研究结果

04 总结

研究背景

淋巴管生成在成人组织炎症、伤口愈合和肿瘤转移等病理过程中发生,它也是肠道、皮肤、心脏和气道炎症过程的一个公认特征。在急性和慢性炎症环境中,淋巴管生成可促进组织水肿的解决和炎症细胞的动员。相反,淋巴管生成也会加重免疫疾病,如移植后的排斥反应。因此,淋巴管生成反应在病理条件下可能是有害的,也可能是有益的,这取决于基础疾病的病理生理学。

血管内皮生长因子-C(VEGF-C)是最强大的淋巴管生成因子。淋巴管生成是通过VEGF-C与VEGFR-3的结合而介导的。有研究表明VEGF-C过表达诱导淋巴管新生,减轻原发性淋巴水肿小鼠模型的水肿程度。此外,IBD动物模型中的抗淋巴管治疗也被证明会加重炎症。

材料方法

1.细胞增殖评估

LECs在96孔板中,每孔细胞数约为 2~5×10⁴个,100μL EGM-2-MV培养。 去除培养基后,用PBS洗涤3次,用100μL EBM-2作阴性对照或指示试剂(外泌子,miR-132或LY 2109761)。450 nm处用细胞计数kit-8检测吸光值。

2. 细胞迁移试验

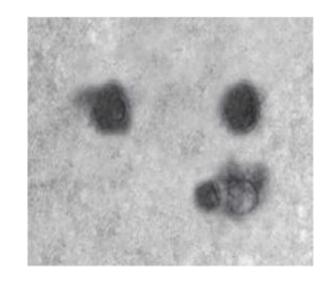
经指示试剂处理后,将悬浮于无血清培养基中的2×105个LECs细胞转入上腔内进行迁移试验,将添加10%FBS的培养基放入下腔内。通过膜向下表面迁移的细胞在48h后固定、染色和计数。

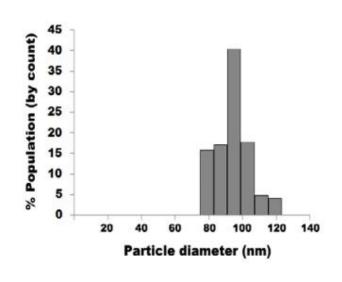
3.管形成试验

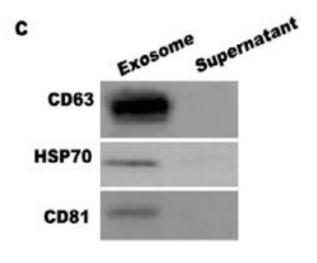
基质凝胶(Matrigel)放置在24孔板中 37° C,30min。将 2×10^{5} 个LECs接种 到24孔包膜板中,在5%CO $_{2}$ 浓度下,加入500 µL的EBM-2,含指示试剂的 EBM-2在 37° C下培养24h。在光学显微 镜下观察并拍照。

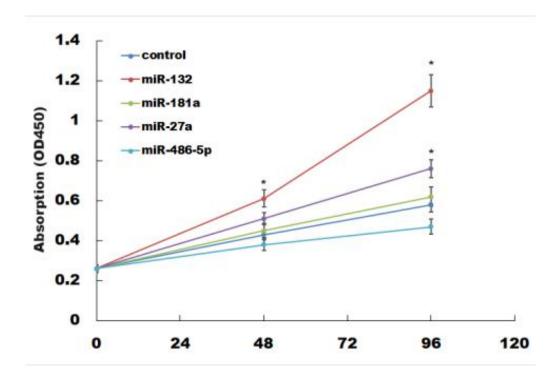
4. 荧光素酶报告实验

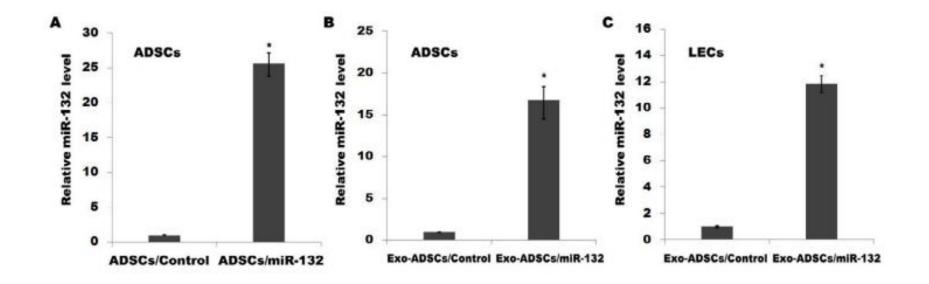
构建了pGL3-Smad7-3'-UTR(野生型)或pGL3-Smad7-3'-UTR(突变型)重组质粒。40nM的miR-132或对照miRNA共转染,2 ng的pRL-TK及50 ng含目的基因(野生型或突变型)3'UTR的荧光素酶报告质粒共转染HepG 2细胞。

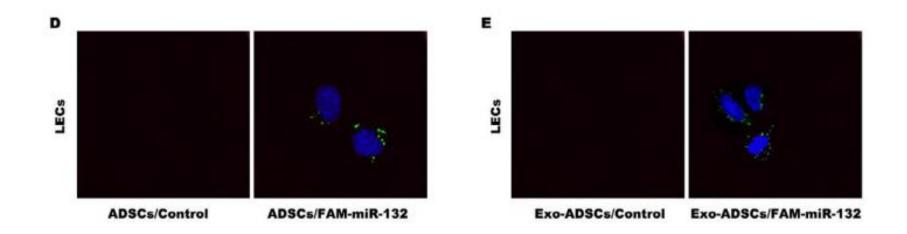


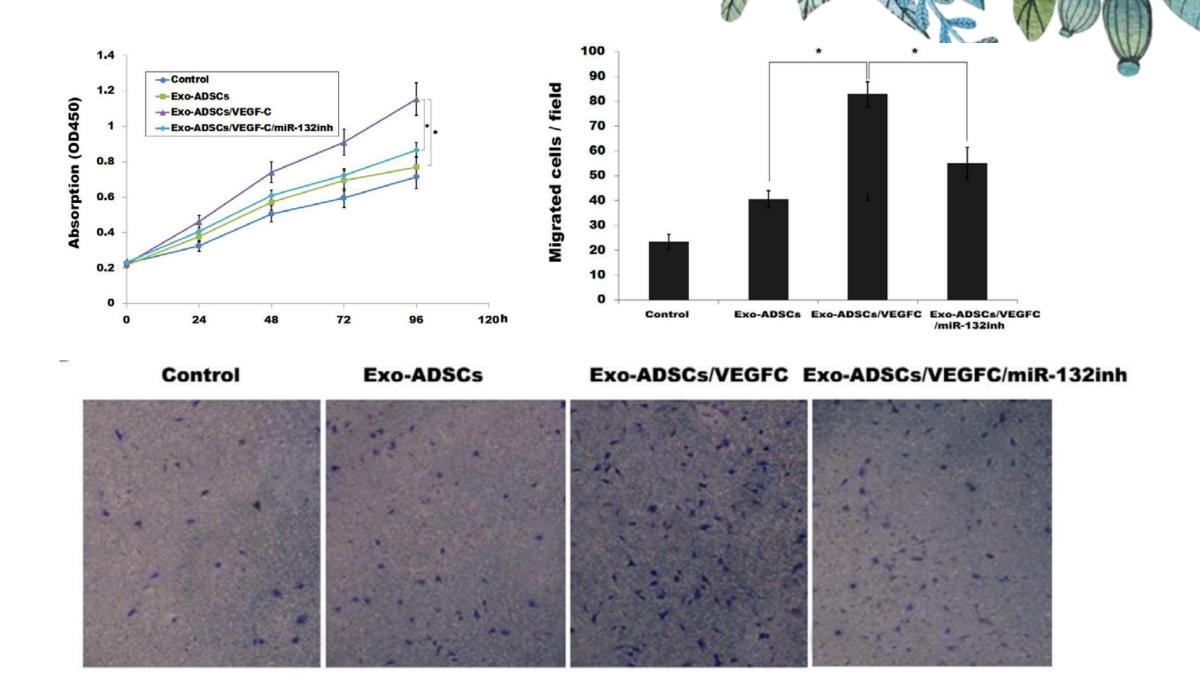

研究结果

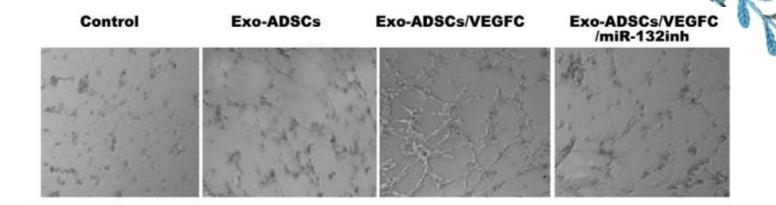


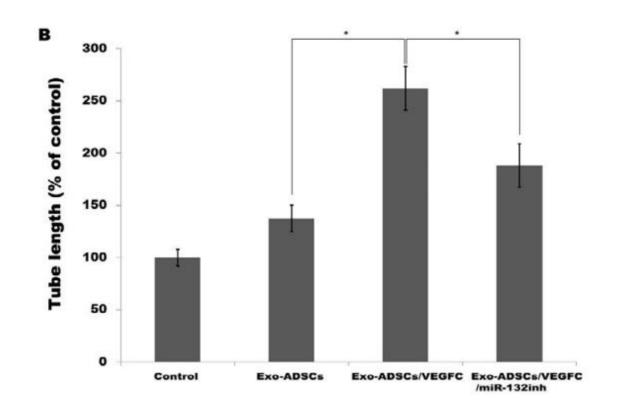




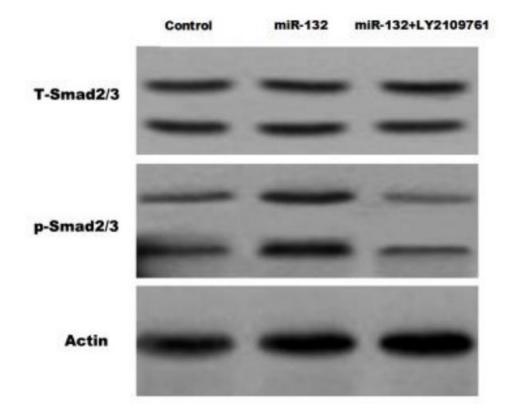

透射电镜 NTA WB

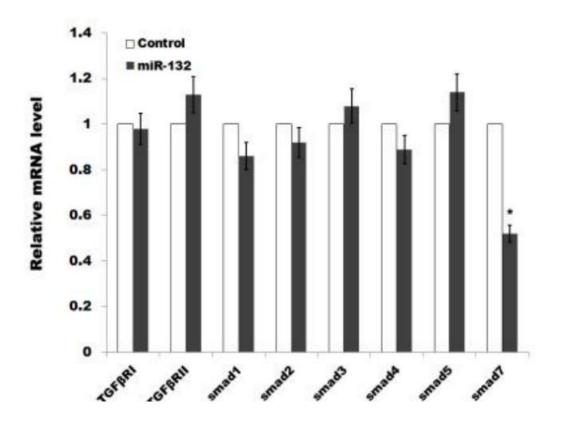

	Exo/ADSC control	Exo/ADSC+VEGFC	Up or Down
miR-126	153.9508	101.71	DOWN
	124.2514	111.3253	
	101.4858	118.9297	
miR-132	6.020987	17.15981	UP
	5.038304	16.6152	
	5.528374	15.32034	
miR-9	5.528374	5.320338	
	8.987999	10.61512	
	9.872763	12.17262	
miR-1236	60.5865	38.34589	DOWN
	57.14203	35.47851	
	56.6141	34.5948	
miR-181a	37.66102	41.51627	UP
	39,47288	54.10103	
	40.27287	45.8273	
miR-31	112.674	131,2645	
	114.281	134.393	
	115.8297	125.5152	
miR-466	1.641713	2.091984	
	2.748301	2.802094	
	1.857362	3.110209	
miR-146a	1.902637	1.128296	
	1.702726	1.030202	
	1.826356	1.100204	
miR-146b	4.902637	3.128296	
	5.702726	4.030202	
	4.826356	5.100204	
miR-155	91.51627	37.66102	DOWN
	94.10103	39.47288	DOWN
	95.8273	40.27287	
miR-221	0.632529	1.016558	
	0.741817	1.229374	
	0.600063	0.637263	
	0.832529	1.023514	
IIIIK-222	0.784652	1.115246	
	0.686587	0.965874	
miR-27a	112.674	171,2645	UP
	114.281	174.393	OF
	115.8297	175.5152	
miR-486-5p			UD
	3.021657	13.05356	UP
	3.602155	15.33022	
'D 00	3.852031	17.03127	
miR-93	28.60254	18.81746	
	28.03936	27.81728	
	26.83836	17.01827	

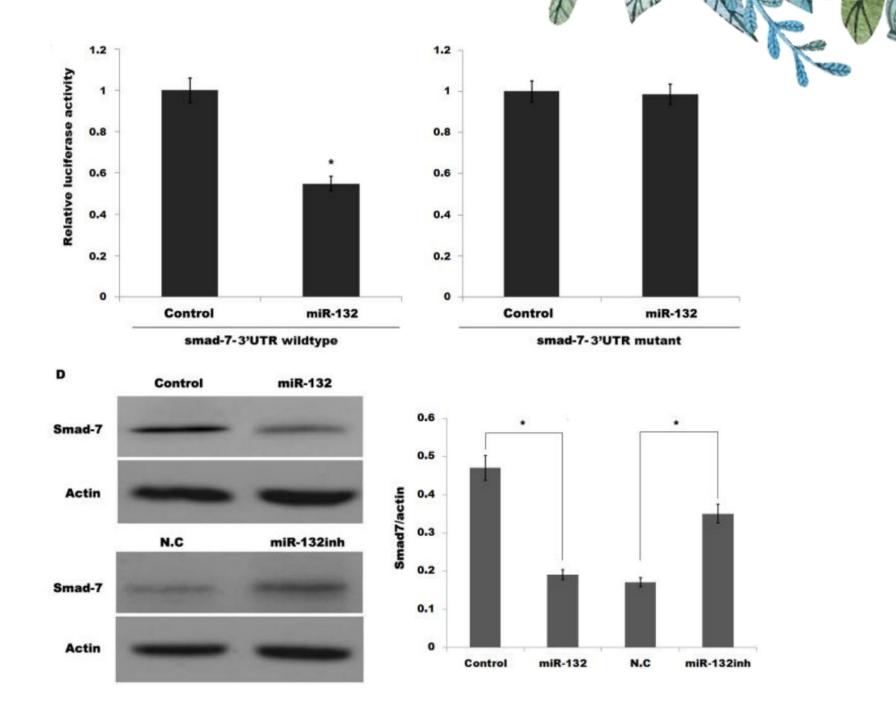

15种与淋巴管生成有关的miRNA











LY2109761是TGF-β/Smad的特异性抑制剂

总结

分离鉴定外泌体

电镜, NTA, WB

15种参与淋巴管生成miRNAs,并确定研究miR-132

ADSCs/VEGF-C外泌体能够传递miR-132到LECs细胞

Q-PCR, 免疫荧光

ADSCs/VEGF-C外泌体中的miR-132能够促进 LECs细胞增殖,转移和淋巴管形成

TGF-β/Smad的特异性抑制剂能够抑制miR-132对 LECs细胞增殖,转移和淋巴管形成的促进作用

双荧光素酶验证miR-132靶基因Smad7

ADSCs/VEGF-C外泌体中的miR-132通过TGF-β/Smad7途径调节LECs细胞增殖,转移及淋巴管形成

THANKS YOU!!!