文章编号:1000-2367(2016)06-0096-07

DOI:10.16366/j. cnki. 1000-2367. 2016.06.017

Co-Fe-B 非晶态合金成键及电子性质的 DFT 研究

张成刚,方志刚,赵振宁,韩建明,刘继鹏,徐诗浩,刘 琪

(辽宁科技大学 化学工程学院, 辽宁 鞍山 114051)

摘 要:利用密度泛函理论(DFT),通过团簇 Co₂FeB₂,CoFe₂B₂ 的优化和计算,研究 Co-Fe-B 非晶态合金成键 及电子性质.结果表明:团簇 Co₂FeB₂(富 Co)中主要的电子流向为 B→Co,B→Fe,而团簇 CoFe₂B₂(富 Fe)电子流向 多样化,这导致富 Co 合金中键级比例分布不均匀,而富 Fe 合金中键级比例相对均匀;另外,金属与 B 原子成键对合 金稳定性的贡献最大,而两种团簇的 M_{(max})-B 与 Co-Fe 键协同作用相反:富 Co 团簇中 Co-B 与 Co-Fe 成键强度同增 同长,而富 Fe 团簇中 Fe-B 与 Co-Fe 成键强度相互抑制.以上结论在一定程度上解释了富 Co 合金热稳定性差的现 象.另外,B 原子使富 Fe 团簇空间结构、成键以及电子流动方向更加复杂,使合金非晶态化增加.Co-Fe-B 非晶态合 金中存在 B 原子之间近距离接触,希望此结论不久后得到实验验证.

关键词:Co-Fe-B非晶态合金;局域结构;成键性质;电子性质;稳定性;密度泛函理论(DFT)

中图分类号:O641

文献标志码:A

由金属和类金属(如 Co,Fe,Ni,B,P)组成的非晶态合金是一种介于晶体和无定型的新型介观材料.目前有众多科研学者认为 Co-Fe-B 非晶态合金具有特殊的导电性^[1-2]、电磁性^[3-9]已经发现此类合金在微型电磁装置制造方面具有广阔的应用前景^[10].对于在 Mgo 介质中 B 原子是否有利于合金的非晶态化存在争议,Hu Wang 等人^[11]认为 B 原子不利于此合金非晶态化而 Yugo Asai 等人^[12]认为 B 原子有利于此合金非晶态化合金的非晶态化,与其内部不同原子之间的成键和复杂的电子结构密不可分,因此有必要对 Co-Fe-B 非晶态合金的成键及电子性质进行研究.本文根据文献^[13]中金属(Co,Fe)与非金属(B)原子摩尔比为 3:2 的实验数据,用团簇 Co₂FeB₂,CoFe₂B₂ 模拟 Co-Fe-B 非晶态合金深入探究其成键及电子性质,旨在为新型 非晶态材料的开发提供必要的理论依据.

1 构型设计及理论计算

根据拓扑学原理对团簇 $Co_2 FeB_2$, $CoFe_2B_2$ 进行空间立体结构设计, 分别设计了团簇 $Co_2 FeB_2$, $CoFe_2B_2$ 各 15 种可能的初始构型.

本文利用密度泛函理论(DFT)^[14],在B3LYP/Lanl2dz水平下,对团簇各个可能存在的构型进行全参数 优化计算和相关的频率计算,对Co,Fe原子采用 Hay 等人^[15]的含相对论校正的有效核电势价电子从头算 基组,即采用18-eECP的双ξ基组(3s,3p,3d/2s,2p,2d),对类金属B采用Dunning/Huzinaga双ξ基组(9s, 5p/3s,2p).全部计算在启天 M4390 计算机上用 Gaussian09 程序^[16]完成.

收稿日期:2016-01-24;修回日期:2016-09-24.

基金项目:国家自然科技基金重点资助项目(51634004);2015 年国家级大学生创新创业训练计划(201510146039);2015 年辽宁省大学生创新创业计划项目(201510146009);2016 年国家级大学生创新创业训练计划 (201610146033);2016年辽宁省大学生创新创业训练计划(201610146011);2016年辽宁省大学生创新创业训 练计划(201610146044).

作者简介(通信作者):方志刚(1964-),男,广东人,辽宁科技大学教授,从事材料物理化学及催化化学研究,E-mail:LN-FZG@163.com.

2 结果与讨论

2.1 稳定构型的结构

根据拓扑学原理对团簇 Co₂FeB₂,CoFe₂B₂进行空间立体结构设计,并对其进行计算和优化,分别得到 8 种和 9 种构型,如图 1(右上方括号内数字代表多重度,各重态优化构型分别按照能量由低到高顺序排列, [1,]]分别表示团簇 Co₂FeB₂、CoFe₂B₂). 根据图 1 知,团簇 Co₂FeB₂ 构型包括三角双锥(1⁽¹⁾、4⁽¹⁾、3⁽³⁾)、四角 方锥(2⁽¹⁾)和戴帽三角锥(3⁽¹⁾、5⁽¹⁾、1⁽³⁾、2⁽³⁾);CoFe₂B₂异构体趋于多样化,构型包括三角双锥(3⁽⁴⁾)、四角锥 (2⁽²⁾、2⁽⁴⁾)、平面型(5⁽²⁾、6⁽²⁾)和戴帽三角锥(1⁽²⁾、3⁽²⁾、4⁽²⁾、1⁽⁴⁾),其中构型 3⁽²⁾和 4⁽²⁾互为对映异构体. 与富 Co 团簇 Co₂FeB₂相比,富 Fe 团簇 CoFe₂B₂存在构型较多且存在平面结构,空间结构更加复杂.

I -3(1)

I -3(1)

I -4⁽¹⁾

II -3⁽²⁾

II -4⁽²⁾

II -5⁽²⁾

1 -14

1 -24

图1 团簇Co₂FeB₂,CoFe₂B₂的稳定构型

2.2 结合能和吉布斯自由能

为通过研究团簇稳定性考察非晶体合金 Co-Fe-B 稳定性,图 2、3 分别给出了两团簇各个构型的结合能 E_{bin} 、吉布斯自由能变 G_{g} ;对于团簇 Co₂FeB₂: $E_{bin} = 2E_{Co} + E_{Fe} + 2EB - E_{Co2FeB2}$, $G_{g} = G_{Co2FeB2} - 2G_{Co} - G_{Fe} - 2G_{B}$;对于团簇 CoFe₂B₂: $E_{bin} = E_{Co} + 2E_{Fe} + 2E_{B} - E_{CoFe2B2}$, $G_{g} = G_{Co} - 2G_{Fe} - 2G_{B}$.

从图 2 中可以看出,团簇 Co₂FeB₂ 中三重态构型比单重态的结合能大,构型 3⁽³⁾ 到 1⁽¹⁾结合能发生较大的能量落差(1401、1125 KJ/mol),结合能变化浮动较大.与团簇 Co₂FeB₂ 不同,团簇 CoFe₂B₂ 各构型结合能随能量的增加变化非常缓慢,未发生较大的能量落差.整体来看,团簇 CoFe₂B₂ 各构型结合能均大于团簇 Co₂FeB₂ 各构型的结合能,可见富 Fe 团簇 CoFe₂B₂ 原子间成键能力更强.

根据图 3,两种团簇各个构型在生成过程中吉布斯自由能变化量均为负值,可见构型生成反应能够进行.对团簇 Co₂FeB₂ 各构型而言,随能量的升高,吉布斯自由能变升高;而由构型 3⁽³⁾到 1⁽¹⁾发生较大的能量 变化,三重态构型吉布斯自由能变明显小于单重态构型.对团簇 CoFe₂B₂ 而言,随能量的升高,吉布斯自由 能变升高,变化较为缓慢,特别是能量较低的构型 1⁽⁴⁾,2⁽⁴⁾,1⁽²⁾,变化量几乎相同.从整体看,团簇 CoFe₂B₂ 各构型吉布斯自由能变均小于团簇 Co₂FeB₂ 各构型,说明富 Fe 团簇 CoFe₂B₂ 更易生成和存在;另外,与团 簇 Co₂FeB₂ 不同,团簇 CoFe₂B₂ 构型吉布斯自由能变得变化较为缓慢,说明生成团簇 CoFe₂B₂ 各个构型的 难易程度没有太大差别,有利于团簇整体稳定性,而生成团簇 Co₂FeB₂ 各构型难易程度则有很大差别,不利 于团簇 Co₂FeB₂ 整体稳定性.

从结合能和吉布斯自由能两方面的研究显示,富 Fe 团簇 CoFe₂B₂ 结合能更大、成键能力更强,且各构型结合能相近,有利于团簇 CoFe₂B₂ 的稳定性;富 Fe 团簇 CoFe₂B₂ 吉布斯自由能变较小(负值),更易生成, 且各构型吉布斯自由能变相比富 Co 团簇 Co₂FeB₂ 变化量小,有利于团簇 CoFe₂B₂ 的生成,所以富 Fe 合金 有更好的稳定性,这与文献[17]中"富 Co 非晶态合金热稳定性差"的结论相同.

图2 团簇Co,FeB,, CoFe,B,各构型结合能

2.3 成键性质

2.3.1 各类键级

为直观分析不同原子成键对团簇稳定性的影响,表1列出了各团簇构型键级所占比例 P(M 指金属原子 Co 或 Fe);根据表1,不同原子成键对团簇稳定性的贡献不同.对于团簇 Co₂FeB₂,单重态构型中金属之间键 级所占比例小(M-M/%:0.69~9.40),金属与非金属键级所占比例大(M-B/%:84.68~99.31),而除构型 $4^{(1)}$ 外,其他构型中 B-B 键级对团簇的稳定性没有贡献(0.00%);与单重态类似,三重态构型中金属之间键级 所占比例小(M-M/%:0.88%~6.85%),金属与非金属键级所占比例大(M-B/%:84.68~88.34),与单重 态不同之处在于 B-B 键对团簇的稳定性有一定程度的贡献,贡献比例为 8.47%~10.78%,这种贡献超过了 金属之间的贡献比例(0.88%~6.85%),可见 B-B 键级对不同重态的团簇 Co₂FeB₂ 贡献不同.对于团簇 CoFe₂B₂,与团簇 Co₂FeB₂ 相同之处在于所有构型中金属之间键级所占比较小(M-M/%:0.00~23.82),金属与非金属键级所占比例大(M-B/%:58.54~100.00),特别是构型 $2^{(4)}$ 的稳定性全部由 M—B 键贡献;不同之处在于除构型 $2^{(4)}$ 外,团簇 CoFe₂B₂ 各稳定构型中 B-B 键级对稳定性均有贡献(B-B/%:3.00~17.64).

为了解各类键级对团簇稳定性的贡献情况,本文求得各类键级的平均值所占总键级的比例并制成图 4. 由图 4 知,各类键对团簇 Co₂FeB₂ 稳定性的贡献依次为 Fe-B>Co-B>B-B>Fe-Co=Co-Co 键;其中 Co-B, Fe-B 键级比例高达 39%和 40%,B-B 键级贡献为 13%,而 Fe-Co,Co-Co 键级比例非常低,均为 4%.与团簇 Co₂FeB₂ 类似,各类键对团簇 CoFe₂B₂ 稳定性的贡献依次为 Fe-B>Co-B>B-B>Fe-Co>Fe-Fe 键;其中 Fe-

B、Co-B 键级比例为 38%、28%,B-B 键级贡献为 20%,Fe-Co、Fe-Fe 键级贡献分别为 9%、5%	.可见	M-B 键
对团簇稳定性起到主导作用,尤其是 Fe-B 键级所占比例最大.		

表 1 团簇 Co₂ FeB₂, CoFe₂ B₂ 中各类成键键级所占比例

•	Configuration	The proportion of each bond order							
		PCo-Co/%	PCo-Fe/%	PM-M/%	PFe-B/%	PCo-B/%	PM-B/%	PB-B/%	
	1(1)	3.46	0.00	3.46	37.63	58.90	96.53	0.00	
	2(1)	0.00	8.08	8.08	25.95	65.97	91.92	0.00	
	3(1)	2.78	0.00	2.78	19.55	77.67	97.22	0.00	
	. 4 ⁽¹⁾	4.83	4.57	9.40	37.53	47.45	84.98	5.61	
	5(1)	0.69	0.00	0.69	38.49	60.82	99.31	0.00	
	1(3)	0.00	6.85	6.85	25.54	59.14	84.68	8.47	
	2(3)	0.00	0.88	0.88	31.33	57.01	88.34	10.78	
	3(3)	0.00	1.48	1.48	28.88	58.90	87.78	10.73	
	Configuration	PFe-Fe/%	PCo-Fe/%	PM-M/%	PFe-B/%	PCo-B/%	РМ-В/ %	PB-B/%	
	1(2)	0.00	5.29	5.29	54.48	32.09	86.57	8.14	
	2(2)	0.00	3.16	3.16	58.50	27.64	86.14	10.70	
	3(2)	5.35	3.55	8.90	59.32	26.69	86.01	5.09	
	4(2)	6.00	3.98	9.98	59.82	23.55	83.37	6.65	
	5(2)	2.12	21.70	23.82	58.23	0.31	58.54	17.64	
	6(2)	0.00	1.29	1.29	66.24	29.47	95.71	3.00	
	1(4)	4.93	2.77	7.70	57.42	25.98	83.40	8.91	
	2(4)	0.00	0.00	0.00	65.17	34.83	100.00	0.00	
	3(4)	0.00	19.04	19.04	66.35	0.96	67.31	13.65	

团簇 Co₂FeB₂ 中 M-B 键级比例占 79%,与其他键级比例相差非常大,对团簇 Co₂FeB₂ 稳定性有贡献的 键分布不均匀;与团簇 Co₂FeB₂ 相比,团簇 CoFe₂B₂ 中 M-B 键级所占比例较少(66%),且 Co-B 键级与 B-B 键级比例相差不大(28%、20%);另外,团簇 CoFe₂B₂ 中 B-B、Fe-Co、Fe-Fe 键级比例(20%、9%、5%)均分别 大于团簇 Co₂FeB₂ 中 B-B,Fe-Co,Co-Co 键级比例(13%、4%、4%).可见,两团簇中键级比例均匀化程度不 同,Co 原子摩尔比增大不利于成键的均匀化;与富 Co 团簇 Co₂FeB₂ 相比,富 Fe 团簇 CoFe₂B₂ 中对稳定性 有贡献的键分布较均匀,各类键对团簇稳定性贡献方面起到协同作用.

图4 团簇Co,FeB, CoFe,B,各类键级所占比例

2.3.2 各类键长

根据 2.3.1 的讨论,选取两团簇的 Co-Fe,M-B 及 B-B 键,分析这三类键对团簇的影响($M_{(max)}$ 指团簇中 原子个数较多的金属原子);图 5、6 分别画出了团簇 Co₂FeB₂,CoFe₂B₂ 各个构型各键长随能量增加的变化 曲线(各构型按能量由低到高依次排列).由图 5 知,团簇 Co₂FeB₂ 中 Fe-Co 键与 Co-B 键随构型能量的增高 变化趋势相同,键长表现为同增同减的协同作用;根据图 6 知,团簇 CoFe₂B₂ 中 Fe-Co 键与 Fe-B 键随构型能 量增高变化趋势明显相反,成键强度相互抑制,键长表现为此消彼长的协同作用;可见两种团簇的 $M_{(max)}$ -B 与 Co-Fe 键协同作用相反;团簇 Co₂FeB₂ 中 Fe-Co 与 Co-B 成键强度同增同长的协同作用可能使团簇缺少 各键之间的相互抑制作用,不利于团簇的稳定性;而 CoFe₂B₂ 中 Fe-Co 与 Fe-B 成键强度的相互抑制作用限 制了各原子的移动空间,增加团簇的稳定性,结合 2.3.1 的讨论,富 Co 团簇 Co₂FeB₂ 中对其稳定性有贡献 的键级比例分布不均匀, B-B 键对其稳定性贡献小,这可能是富 Fe 团簇稳定性好的原因.综合图 5、6 来看, 除构型 $1^{(1)}$ 和 $6^{(2)}$,团簇 Co₂FeB₂, CoFe₂B₂ 中其他所有构型中 B-B 键长均小于双 B 原子半径之和(0.190

nm),另外,B-B 键长随构型能量的增加变化幅度相对较小(0.161~0.190 nm),说明 Co-Fe-B 非晶态合金中存在 B-B 近距离接触,在非晶态 Ni-B 合金中存在 B-B 近距离接触的实验事实^[18-120]已通过团簇 Ni_nB₂ 的理论研究得到证实^[21],因此本文可以预测 Co-Fe-B 非晶态合金中存在 B-B 近距离接触,希望此结论不久后得到实验验证.

图5 团簇Co,FeB,中各稳定构型的平均键长

图6 团簇CoFe,B,中各稳定构型的平均键长

2.4 电子性质

2.4.1 电子流动性

图 7、8 分别给出了团簇 Co₂FeB₂,CoFe₂B₂ 各个构型原子的带电量(Σ Co, Σ Fe, Σ B 分别指所有 Co, Fe,B原子所带电荷量的代数).根据图 7,团簇 Co₂FeB₂ 中单重态构型(1⁽¹⁾、2⁽¹⁾、3⁽¹⁾、4⁽¹⁾、5⁽¹⁾)原子电性相 同,均为金属原子 Co,Fe 带负电,B原子带正电,说明 B 中电子流向 Co,Fe.而三重态各构型原子电性则不 同:其中 1⁽³⁾各原子电性与单重态构型相同;2⁽³⁾电子流向则与单重态相反,Co,Fe 中的电子流向 B 原子;3⁽³⁾ 则为 Co,B 原子流出电子,Fe 原子流入电子.综合来看,重态的改变对团簇的电子流动性造成很大影响,单 重态构型的电子流动性明显大于三重态构型,单重态构型中 B 原子表现出较强的失电子性质,增加体系电 子流动性;而三重态构型各原子带电量与单重态相比非常小,可见团簇 Co₂FeB₂ 电子流向单一,以 B→Co, B→Fe为主,这造成了 M-B 键级占有很大比例(79%).

根据图 8,从整体静电效应来看,团簇 CoFe₂B₂ 四重态各个构型中原子电性相同,均为 Co 和 B 带正电, Fe 原子带负电,可知四重态构型电子流向为 Co→Fe,B→Fe. 二重态构型则无明显规律:构型 1⁽²⁾中 Co 带负 电,Fe,B 带正电,电子流向为 Fe→Co,B→Co;构型 2⁽²⁾和 6⁽²⁾中原子电性相同,电子流向为 Fe→Co,Fe→B; 构型 3⁽²⁾、4⁽²⁾电子流向均为 B→Fe,Co→Fe;构型 5⁽²⁾电子流向为 Co→B,Fe→B,可见团簇 CoFe₂B₂ 电子流 向多样化,电子流动方向相对更加复杂.

两种团簇比较来看,键级比例分布的均匀程度可能是由电子流动多样性导致:团簇 Co₂FeB₂ 电子流向 主要为 B→Co,B→Fe,这导致了对团簇 Co₂FeB₂ 的稳定性有贡献的键级比例分布不均匀,M-B 键级比例大; 而团簇 CoFe₂B₂ 电子流向多样化,故与前者相比,其键级比例分布较均匀,从而有较好的热稳定性;另外,两 团簇中有等量的 B 原子,与富 Co 团簇相比,富 Fe 团簇 CoFe₂B₂ 存在构型的类型更加丰富,电子流动方向更 加复杂,非晶态性质更加明显,B 原子的引进更有利于富 Fe 合金非晶态化,可见本文的研究结果符合 Yugo Asai 等人的研究结论^[12].

2.4.2 团簇各原子轨道 Mulliken 布居数

为更深入了解团簇 Co₂FeB₂、CoFe₂B₂ 体系中各原子之间电子的微观转移方向,表 2 列出了 Co₂FeB₂、CoFe₂B₂ 各重态构型轨道布居数变化量的平均值.

由表 2,整体来看,团簇 Co₂FeB₂和 CoFe₂B₂各轨道得失电子趋势一致,金属原子 Co,Fe 均为 3d、4p 轨 道得电子,4s 轨道失电子;B 原子 2s,2p 轨道布局数变化值较大,2s 轨道失电子,2p 轨道得电子;B 原子 2s 轨道变化值大于 2p 轨道,特别是团簇 Co₂FeB₂的单重态构型二者相差较大(. Δ 2s:-0.715;. Δ 2p:0.500), 说明单重态构型 B 原子的 2s 轨道有强失电子能力,为团簇 Co₂FeB₂ 提供电子流动能力,这与图 7 的讨论结 果"单重态构型中 B 原子表现出较强的失电子性质,增加体系电子流动性"相符.两团簇中金属 Co,Fe 中 3d、 4s 轨道布局数变化量均较大,但 4p 轨道较小,这说明金属与非金属成键决定于金属的 3d、4s 轨道,4p 轨道 对成键贡献较小.

图7 团簇Co,FeB2中各稳定构型的原子带电量

衣 4 回族 CO2 FeD, COF e2 D, 甲谷突尿丁制俱 Mulliken 伯店致受化意的半均值。	2	团簇 Co ₂ FeB, CoFe ₂ B ₂	P各类原子轨道 Mulliken 布居数变化量的平均值	(eV)
--	---	--	-----------------------------	------

Con	figuration	VCo(∆3d)	VCo(∆4s)	VCo(Δ4p)	VFe(∆3d)	VFe(∆4s)	VFe(∆4p)	$VB(\Delta 2s)$	VB(Δ2p)
	I (1)	1.093	-1.175	0.236	1.054	-1.120	0.262	-0.715	0.500
	I (3)	0.813		0.268	0.790	-1.062	0.269	-0.757	0.658
	[[(2)	0.824	-1.081	0.259	0.789	-1.033	0.327	-0.679	0.679
1	II (4)	0.817	-1.088	0.256	0.823	-1.116	0.328	-0.443	0.659

注: I^(X)、II^(X) 指团簇 Co₂FeB₂, CoFe₂B₂的 X 重态的构型, V 是指某重态构型轨道布居数的算数平均值

3 结 论

对团簇 Co₂FeB₂,CoFe₂B₂ 可能存在的构型进行优化计算,通过探究各个优化构型的成键及电子性质来 研究 Co-Fe-B 非晶态合金的性质:[1]富 Co 团簇 Co₂FeB₂ 中 B 原子作为供电子原子向金属 Co,Fe 中流入电 子,而该团簇的键级比例相差大、分布不均匀;富 Fe 团簇 CoFe₂B₂ 各个构型电子流向多样化,键级比例分布 相对均匀,其稳定性由多种键维持;[2]富 Co 团簇 Co₂FeB₂ 中 Fe-B 与 Co-Fe 成键强度变化趋势相同,而富 Fe 团簇 CoFe₂B₂ 中 Co-B 与 Co-Fe 成键强度此消彼长,可见贫钴团簇与富钴团簇 Co(Fe)-B 与 Co-Fe 成键 强度趋势是相反的,以上两点结论为"富 Co 非晶态合金热稳定性差"的研究提供了理论依据.[3]团簇中 B-B 键长的变化幅度较小,键长短,可能存在双 B 原子之间的近距离接触.

参考文献

- [1] Seemann K M, Freimuth F, Zhang H, et al. Origin of the Planar Hall Effect in Nanocrystalline Co₆₀ Fe₂₀ B₂₀ [J]. Physical Review Letters, 2011, 107(8): 312-313.
- [2] Stognei O V, Slyusarev V A, Kalinin Y E, et al. Change of the electrical properties of granular CoFeB-SiO n nanocomposites after heat treatment[J]. Microelectronic Engineering, 2003, 69(24): 476-479.
- [3] Zhang S G, Zhu H X, Tian J J, et al. Electromagnetic and microwave absorbing properties of FeCoB powder composites[J]. Rare Metals,2013,32(4):402-407.
- [4] Zhang S, Zhao Y G, Xiao X, et al. Giant electrical modulation of magnetization in Co₄₀ Fe₄₀B₂₀/Pb(Mg_{1/3}Nb_{2/3})_{0.7}Ti_{0.3}O₃(011) heterostructure[J]. Scientific Reports, 2014, 4(1): 313-317.
- [5] Jeon M S, Chae K S, Lee D Y, et al. The dependency of tunnel magnetoresistance ratio on nanoscale thicknesses of Co₂Fe₆B₂ free and pinned layers for Co₂Fe₆B₂/MgO-based perpendicular-magnetic-tunnel-junctions[J], Nanoscale, 2015, 7(17): 8142-8148
- [6] Molina-Concha B, Zysler R D, Romero H. Anomalous Magnetization Enhancement and Frustration in the Internal Magnetic Order on (Fe0. 69 Coo. 31) B_{0.4} Nanoparticles[J]. Applied Sciences, 2012, 2(2): 315-326.
- [7] Hindmarch A T, Kinane C J, MacKenzie M. Interface induced uniaxial magnetic anisotropy in amorphous CoFeB films on AlGaAs(001)
 [J]. Physical review letters, 2008, 100(11):2339-2340.
- [8] Palusker P V, Lavrijsen R, Sicot M, et al. Correlation between magnetism and spin-dependent transport in CoFeB alloys[J]. Physical review letters, 2009, 102(1):6602.

- [9] Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction[J]. Nature materials, 2010,9 (9):721-724.
- [10] Dadvand D, Jarjoura G, Kipouros G J. Preparation and characterization of Co-Fe-B thin films produced by electroless deposition[J]. Journal Of Materials Science-Materials In Electronics, 2008, 19(1):51-59.
- [11] Wang H, Kou X, Wang S, et al. Structures, magnetic properties and thermal stability of CoFeB/MgO films[J]. Physics Procedia, 2011, 18(1):267-273.
- [12] Asai Y, Ohtake M, Kawai T, et al. Effects of Film Composition and Substrate Orientation on the Structure and the Magnetic Properties of Fe-Co-B Alloy Films Formed on MgO Single-crystal Substrates[J]. Journal of the Korean Physical Society, 2013, 63(3):733-738.
- [13] Belén M C, Zysler R D, Romero H. Anomalous Magnetization Enhancement and Frustration in the Internal Magnetic Order on (Fe_{0.69} Co_{0.31})B_{0.4} Nanoparticles[J]. Applied Sciences, 2012, 2(4): 315-326.
- [14] BECK A. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652.
- [15] Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations[J]. Journal of Chemical Physics, 1985, 82(1); 270-283.
- [16] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision C. 01[CP]. Wallingford CT: Gaussian, Inc., 2010.
- [17] Babu D A, Majumdar B, Sarkar R, et al. Nanocrystallization of amorphous (Fe_{1-x}Co_x)₈₈Zr₇B₄Cu₁ alloys and their soft magnetic properties s[J]. Journal of Materials Research, 2011, 26(16): 2065-2071
- [18] Ishmaev S N, Isakov S L, Sadikov I P, et al. Direct evidence for B-B contact in Amorphous Ni2B from high-resolution neutron diffraction [J]. Journal of Non-Crystalline Solids, 1987, 94(94); 11-21.
- [19] Gardner P P, Cowlam N, Davies H A. measurements of metallic glass structures under conditions of high spatial resolution[J]. Journal of Physics F Metal Physics, 1985, 15(4), 769-778.
- [20] Bràtkovsky A M, Smirnov A V. X-ray absorption fine structure of the model Amorphous and crystalline Ni₂B alloy[J]. Journal of Non-Crystalline Solids, 1993, 156(9):137-140.
- [21] 方志刚,沈百荣,陆 靖,等. Ni-B非晶态合金中电子转移问题的 DFT 研究[J]. 化学学报, 1999, 57, 894-900.

DFT Stuty of Bonding and Electronic Property in Co-Fe-B Amorphous Alloy

ZHANG Chenggang, FANG Zhigang, ZHAO Zhenning, HAN Jianming, LIU Jipeng, XU Shihao, LIU Qi

(School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China)

Abstract: Possible configurations of cluster $Co_2 FeB_2$ and $CoFe_2B_2$ were Calculated and optimized with the Density Functional Theory (DFT) method, in order to study the Bonding and Electronic Property in Amorphous Co-Fe-B Alloy. The results showed that the flow of electronics is from atom B to atom Co and Fe in high Co Cluster $Co_2 FeB_2$, ulike cluster $Co_2 FeB_2$, the flow of electron in high Fe cluster $CoFe_2B_2$ is more complex. It makes a more uniform distribution of bonding among all atoms and various kinds of bonding were generated for the stability of cluster $CoFe_2B_2$; Further more, M-B bonding has biggest contribution to Amorphous Alloy and synergistic effects of $M_{(max)}$ -B and Co-Fe bonding are inverse in different Cluster: the variation trend of Co-B and Co-Fe Bonding strength have same tendency in Co-rich cluster $Co_2 FeB_2$, in contrast, the tendency of Fe-B and Co-Fe is inverse in Fe-rich cluster $CoFe_2B_2$, those maybe the reason that the thermal stability is weak for Co-rich Alloy. In addition, atom B made the structure, bonding and flow of electron of low Co cluster more complex and made it easier to generate amorphous alloy. B-B close contact can be found in amorphous Co-Fe-B alloy system, we hope the conclusion could be verified by experimental result soon.

Keywords: amorphous Co-Fe-B alloy; local structure, bonding property; electronic property; stability; density functional theory(DFT)