文章编号:1000-2367(2015)04-0069-05

DOI: 10. 16366/j. cnki. 1000-2367. 2015. 04. 013

N,S 双掺杂碳纳米材料的合成及 ORR 性能研究

温仕芳,李玲玉,高书燕

(河南师范大学 化学化工学院,河南 新乡 453007)

摘 要:以生物质荆芥杆为前驱体,在 № 气氛的保护下经高温碳化制备出了一种新型的用于燃料电池阴极 氧还原的 N、S 双掺杂的非金属电催化剂,并研究了不同热解温度和洗涤条件对其催化性能的影响.结果表明, 800 ℃热解及 40 ℃稀盐酸洗涤所得产物的催化性能最优:在 0.1 mol·L⁻¹ KOH 溶液中,一步四电子还原过程,具 有优异的催化氧还原活性、抗一氧化碳中毒以及抗甲醇干扰能力.

关键词:N,S双掺杂;碳材料;生物质;氧还原;电催化剂

中图分类号:O646;TB332

文献标志码:A

燃料电池由于具有理论比能量高、环境友好等优势,在航天、航空通讯、交通等方面具有广阔的应用前景和巨大的潜在市场.然而,阴极氧还原反应(Oxygen Reduction Reaction,ORR)作为燃料电池的重要组成部分,其商用催化剂仍是贵金属 Pt 基催化剂.由于 Pt 价格昂贵、资源稀少以及 ORR 催化稳定性不高、易受一氧化碳(CO)中毒和甲醇干扰等问题,这在一定程度上限制了其实际应用和发展.为此,无金属杂原子掺杂的碳纳米管、石墨烯等碳基材料最近被广泛用于燃料电池阴极 ORR 电极材料的研究,并且已经取得了可喜的成果^[1-13].到目前为止,常见的燃料电池阴极催化剂制备方法^[14-19]往往是需要复杂的程序、苛刻的试验条件和设备.因此如何简化合成路线、降低制备成本就显得非常重要和必要.

本课题组一直致力于生物质碳基材料氧还原反应催化剂的研究,先后对天麻、柳叶、发酵大米、竹荪、苋 菜红^[20-24]等廉价或废弃植物进行实验,制备了相应的生物质碳基材料,并探索了这些碳材料在电化学领域 中应用的可能性和条件. 荆芥杆富含元素 N 和 S^[25],是比较理想的杂原子原位掺杂的前驱体,经过热解等处 理后,杂原子进入到碳的结构中,从而制备 N,S 双掺杂碳材料. 因此在以前工作的基础上,我们在氮气保护 条件下,采用不同的温度热解生物质荆芥杆,而后用稀盐酸洗去热解所得物中可能的无机盐和氧化物杂质, 从而合成 N,S 双掺杂碳材料,并把所得产物制成电极,研究在碱性条件下催化氧还原的活性. X 射线光电子 能谱分析(XPS)、拉曼光谱、N₂ 吸脱附测试表征其结构和组成,循环伏安和线性扫描测试表征其催化氧还原 的活性、稳定性、抗一氧化碳中毒和抗甲醇干扰能力. 结果表明,800 ℃热解及 40 ℃稀盐酸洗涤所得产物在 0.1 mol・L⁻¹ KOH 溶液中,一步四电子还原过程,具有优异的催化氧还原活性、抗一氧化碳中毒以及抗甲 醇干扰能力.

1 实验部分

1.1 仪器和试剂

XPS 测试在 ESCALAB 250 仪器上完成,采用单色 Al-K_α(300.0 eV)作为激发光源. N₂ 吸脱附曲线在 ASAP 2020 仪器上进行,通过 BJH 方法获得比表面积和孔径分布. 拉曼光谱测试激发波长为 532 nm 的拉曼光谱仪上进行.

收稿日期:2015-04-29;修回日期:2015-06-29.

通信作者:高书燕(1972-),女,河南镇平人,河南省特聘教授,博士,主要从事电化学功能材料研究, E-mail, shuyangao@htu. cn.

基金项目:国家自然科学基金(21471048);教育部科学基金项目(213023A);河南省高校科技创新团队 (14IRTSTHN005).

第1作者简介:温仕芳(1995一),男,河南新乡人,本科,主要从事功能材料的制备和性能研究.

1.2 催化材料的制备

生物质洗净后,在鼓风干燥箱中干燥后粉碎,而后至于管式炉中在氮气保护条件下 800 C热解,得到的 中间产物在 40 C条件下用稀盐酸洗去热解所得物中可能的无机盐和氧化物杂质,随后用二次水洗涤、多次 离心,以除去多余的盐酸以及无机盐,最后在真空干燥箱中恒温干燥,完全干燥后充分研磨,最终得到氮、硫 双掺杂碳催化材料,记为 S-800.为了比较,我们也制作了 600 C、700 C和 900 C热解温度下的催化剂,分别 记为 S-600、S-700 和 S-900.

1.3 工作电极的制作

先将玻碳电极用 Al₂O₃ 抛光粉抛光至镜面后,放入超声清洗装置中超声 2 min,用二次蒸馏水洗涤干净 晾干后,将 S-800 加入到 Nafion 和二次蒸馏水的混合液中,在超声清洗装置中超声后均匀涂在直径为 3 mm 和 4 mm 电极上,待材料在空气中干燥后作为工作电极备用.作为比较,商用的 Pt/C 电极以及其他材料的工 作电极也用同样的方法制作.

1.4 电化学测试

电化学测试包括循环伏安以及线性扫描是在 CHI 760E(上海辰华仪器有限公司)的电化学工作站上进行的,采用传统的三电极体系,分别是工作电极(3 mm 或 4 mm 的玻碳电极)、参比电极(汞/氧化汞电极)和 对电极(铂片电极),电解液为 0.1 mol・L⁻¹的 KOH 溶液.循环伏安测试的扫描范围-0.8~0.2 V,线性扫描的测试范围-0.8~0.4 V,转速为 400、625、900、1 225、1 600、2 025 r/min,扫速均为 10 mV・s⁻¹,所有实 验均在(25±1) ℃环境中进行.

2 结果与讨论

2.1 结构表征

采用 XPS 测试对材料的表面组成进行了研究,XPS 全谱中(图 1)有碳、氮、硫、氧元素,证明了在制备的 过程中氮、硫元素成功掺杂进入碳骨架中,其中 N 的含量占 1.74%,硫的含量占 0.78%,故将材料归属为 氮、硫双掺杂的碳材料.通过 BET 方法对所得材料的比表面积进行测试,测得材料的比表面积如表 1,热解 温度为 800 ℃的氮掺杂碳材料的比表面积约为 241.1 m² · g⁻¹,其他材料的比表面积都小于 S-800.大的比 表面积增加了催化活性位点,更重要的是便于电解质/反应物氧气分子的传输、扩散,从而提高其催化 ORR 的活性^[26].更有助于氧还原反应的发生,通过 BJH 得到了样品的孔径分布,其较为明显的分布范围为 2.7~ 5.5 nm,伴随着不太明显的范围为 11~107 nm,说明此催化剂是介孔和大孔的.另外,图 1D 拉曼光谱显示, S-800 在 1 331 cm⁻¹和 1 578 cm⁻¹处出现了两个典型的 D 峰和 G 峰,D 峰代表无序和缺陷程度^[27],G 峰代 表石墨化的程度,D 峰与 G 峰的强度比值为 1.46,大于石墨烯的强度(1.40)比值,说明在此材料里边存在更 大的结晶石墨区域^[28],由此表明热解温度在 800 ℃条件的催化剂有望成为好的氧还原阴极催化剂.

2.2 电性能测试

以上结构和组成表征表明 S-800 是氮、硫双掺杂碳材料,有望成为潜在的 ORR 非金属电催化剂.为了评估氧还原的活性,我们通过循环伏安测试所有不同热解温度条件下的 4 种不同材料的氧还原催化性能(图 2A),其氧还原电位以及电流密度如表 1 所示,与其他 3 个不同温度下的材料相比,S-800 表现出更正的电位 -0.143 V,以及更大的电流密度-2.155 mA · cm⁻²,虽然 S-800 催化剂的电位不及商业 Pt/C 的氧还原峰 值电位(-0.047 V),但两者很接近,并且 S-800 催化剂的电流密度大于 Pt/C,说明样品具有良好的 ORR 催化活性.这可能是因为 800 ℃下材料的石墨化程度、杂原子的浓度以及碳材料的缺陷达到了一个比较理想的 平衡状态,有利于 ORR 的进行.

我们进一步采用旋转圆盘电极研究催化材料的 ORR 动力学过程.如图 2B 所示,热解温度为 800 ℃的 样品电极的起始电位为一0.031 V,在4个热解温度下其电位最正,在一0.35 ~一0.8 V 电势范围内有很好 的扩散电流平台出现,进一步通过 Koutecky-Levich 方程(1)和(2),计算材料催化 ORR 的电子转移数目平 均约为 3.4,是接近于直接的 4 电子转移过程,显示出材料优越的 ORR 性能,这与 CV 测试结果一致.

图 1 (a)为S-800的XPS全谱图,(b)、(c)为S-800的吸脱附曲线以及孔径分布图,(d)为S-800的拉曼光谱图

表1 样品循环伏安氧还原峰电位和电流密度

	材料	V/V	$J/(\mathrm{mA}\cdot\mathrm{cm}^{-2})$	$V_{i\!$	n*	$A/(\mathrm{m}^2 \cdot \mathrm{g}^{-1})$
-	S-600	-0.372	-0.602	-0.119	2.8	127.6
	S-700	-0.386	-1.02115	-0.084	3.1	56.5
	S-800	-0.143	-2.15462	-0.031	3.4	241.1
	S-900	-0.367	-1.079 57	-0.042	2.9	137.3
	Pt/C	-0.047	-1.43736	0.338	4.1	无

* 电子转移数目均值.

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{0.5}} + \frac{1}{J_K},$$
(1)

$$B = 0.62 \ nFC_0 (D_0^{2*3} V^{-1/6}). \tag{2}$$

对于直接醇类燃料电池的阴极 ORR 催化剂而言,对醇类氧化的抗干扰能力是很重要的性能参数,因此 我们利用 CV 法对样品以及 Pt/C 的耐甲醇干扰性能做了进一步的研究. 图 2D,E 分别是样品和 Pt/C 在氧 气和加入体积分数为 10%的甲醇的氧气饱和的溶液中的 CV 曲线,由图可见,在有甲醇的条件下,Pt/C 的 ORR 峰消失,又出现一个新的氧化峰,这一氧化峰归属于甲醇的氧化峰. 但在整个电位扫描范围内,S-800 的 CV 曲线并没发生变化,这说明样品具有明显优异的耐甲醇干扰性能. 我们利用 I-t 技术进一步研究了 S-800 的抗 CO 毒害性能,图 2F 是在氧气饱和的 0.1 mol • L⁻¹ KOH 溶液中,在电位为一0.30 V 下的 I-t 曲 线,从图中可以看出,在 1 400 s 时引入和通入氧气流速相近的 CO 气体,Pt/C 的 ORR 电流与加入惰性气体 N₂ 相比降低了约为 50%,而样品几乎没发生变化,其抗 CO 毒害性能明显优于 Pt/C.

3 结 论

在氦气保护、800 ℃时热解生物质荆芥杆,而后在40 ℃条件下用稀盐酸洗去热解所得物中可能的无机 盐和氧化物杂质,从而合成 N,S 双掺杂碳材料,所制备的掺杂碳材料中 N 和 S 的原子分数约为 1.74%和 0. 78%,且在碱性条件下显示出极好氧化还原电催化活性、抗 CO 毒害能力和耐甲醇干扰,有望应用于燃料电 池阴极催化剂以替代传统的 Pt 基催化剂,为燃料电池的商业化应用奠定了一定材料基础.

图2 4种催化剂在氧气饱和的0.1 mol·L⁻¹ KOH溶液中的循环伏安曲线A和线性扫描曲线B;扫速为10 mV·s⁻¹,转速为1600 r·min⁻¹,以及通过K-L方程得出的电子转移数C;D、E为S-800与Pt/C的甲醇干扰曲线,F是通过L-t技术得到的CO中毒曲线

参考文献

- [1] Gong K, Dú F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915):760-764.
- [2] Qu L, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS nano,2010,4(3):1321-1326.
- [3] Yang L, Jiang S, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angew Chem Int Ed, 2011, 123(31): 7270-7273.
- [4] Chen S, Bi J, Zhao Y, et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Adv Mater, 2012, 24(41): 5593-5597.
- [5] Bo X, Han C, Zhang Y, et al. Confined nanospace synthesis of less aggregated and porous nitrogen-doped graphene as metal-free electrocatalysts for oxygen reduction reaction in alkaline solution[J]. ACS Appl Mater Interfaces, 2014, 6(4): 3023-3030.
- [6] Han C, Wang J, Gong Y, et al. Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium[J]. J Mater Chem A,2014,2(3):605-609.
- [7] Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc, 2012, 134(1):15-18.
- [8] Jin H, Zhang H, Zhong H, et al. Nitrogen-doped carbon xerogel: a novel carbon-based electrocatalyst for oxygen reduction reaction in

proton exchange membrane (PEM) fuel cells[J]. Energy Environ Sci, 2011, 4(9): 3389-3394.

- [9] Balan B K, Manissery A P, Chaudhari H D, et al. Polybenzimidazole mediated N-doping along the inner and outer surfaces of a carbon nanofiber and its oxygen reduction properties[J]. J Mater Chem, 2012, 22(44), 23668-23679.
- [10] Hu C, Xiao Y, Zhao Y, et al. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries[J]. Nanoscale, 2013, 5(7); 2726-2733.
- [11] Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O₂ reduction in an alkaline medium[J]. Angew Chem Int Ed, 2011, 123(14): 3315-3319.
- [12] Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1):205-211.
- [13] Wang S, Zhang L, Xia Z, et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Angew Chem Int Ed, 2012, 51(17): 4209-4212.
- [14] Jin Z, Yao J, Kittrell C, et al. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets[J]. ACS Nano, 2011,5(5):4112-4117.
- [15] Xue Y, Wu B, Jiang L, et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition[J]. J Am Chem Soc, 2012, 134(27), 11060-11063.
- [16] Sheng Z H, Shao L, Chen J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350-4358.
- [17] Li N, Wang Z, Zhao K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon, 2010, 48(1): 255-259.
- [18] Chen L F, Zhang X D, Liang H W, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors[J]. ACS Nano, 2012, 6(8), 7092-7102.
- [19] Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogendoped sites at basal planes[J]. Nano Lett, 2011, 11(6): 2472-2477.
- [20] Gao S, Chen Y, Fan H, et al. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors[J]. J Mater Chem A,2014,2(10):3317-3324.
- [21] Gao S, Chen Y, Fan H, et al. A green one-arrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts[J]. J Mater Chem A, 2014, 2(18):6320-6325.
- [22] Gao S, Fan H, Zhang S. Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity[J]. J Mater Chem. A,2014,2(43):18263-18270.
- [23] Gao S, Fan H, Chen Y, et al. One stone, two birds: gastrodia elata-derived heteroatom-doped carbon materials for efficient oxygen reduction electrocatalyst and as fluorescent decorative materials[J]. Nano Energy, 2013, 2(6): 1261-1270.
- [24] Gao S, Geng K, Liu H, et al. Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of oxygen reduction reaction[J]. Energy Environ Sci,2015,8(1):221-229.
- [25] 黄志宏,蒋东旭,赖小平.大孔吸附树脂法富集纯化荆芥穗总黄酮的工艺研究[J].中药材,2010,33(9):1476-1480.
- [26] Xu J B, Zhao T S, Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells[J]. RSC Adv, 2013, 3(1), 16-2.
- [27] Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18):187401.
- [28] Jin M, Kim T H, Lim S C, et al. Facile physical route to highly crystalline graphene[J]. Adv Funct Mater, 2011, 21(18): 3496.

Synthesis of N, S Co-doped Carbon Nanomaterials and Their Application as ORR Electrocatalyst

WEN Shifang, LI Lingyu, GAO Shuyan

(College of Chemistry and Chemical Enginearing, Henan Normal University, Xinxiang 453007, China)

Abstract: A new type of N, S co-doped non-metal catalyst for cathode oxygen reduction reaction (ORR) in fuel cell was prepared using biomass as the precursor by high temperature carbonization in N_2 atmosphere. The structure and composition were characterized and analyzed, and the effect of calcination temperature on the catalyst performance was discussed. The results indicate that the optimal carbonization temperature is 800 °C, and the acid treatment benefits the catalyst activity. The catalyst shows excellent electrochemical activity, resistance to CO poisoning and methanol in 0.1 mol • L⁻¹ KOH solution.

Keywords: nitrogen, sulfur, co-doping; carbon nanomaterials; biomass; oxygen reduction; electrocatalyst