

# Microbial life on a sand grain: from bulk sediment to single grains

# 报告人:张玲玉 时间:2018-4-14



厚德博学 止于至善



International Society for Microbial Ecology

Original Article | OPEN

# Microbial life on a sand grain: from bulk sediment to single grains

David Probandt, Thilo Eickhorst, Andreas Ellrott, Rudolf Amann & Katrin Knittel 🟁



David Probandt

Postdoctoral Researcher at Max Planck Institute for Marine Microbiology

Max Planck Institute for Marine Microbiology • International Max Planck Research School of M...

Bremen, Bremen, Germany • 201 &

IF:9.664



## 日 CONTENTS

#### **1** Introduction

2 Materials and methods

**3** Results and Discussions



### Introduction

- The top 10 cm of marine sediments constitute a habitat for estimated 1.7 × 10<sup>28</sup> bacteria and archaea(Whitman et al., 1998).
- In sandy sediments, >99% of the benthic microbial community lives attached to sand grains (Rusch et al., 2003).
- we hypothesize that the diversity and community composition would differ more strongly between sand grains than between replicates of the bulk sediment.
- We established a workflow for (i) bacterial diversity analysis of the sand grain's community using tag sequencing of partial 16S rRNA genes amplified from individual SSGs, and(ii) the direct visualization of microbial communities on native sand grains using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH).



#### **Materials and Methods**



Geographic location of sampling site Helgoland Roads in the southern North Sea. The time was 14 June 2016. Sediment push cores were retrieved by scientific divers from a water depth of 8m.

#### Sample treatment:

DNA extraction and PCR

samples were stored at  $-20^{\circ}$  C.

CARD-FISH

SYBR green I and Acridine Orange staining, surface sediment (0–2 cm) was fixed with 1.5% formaldehyde for 1 h at room temperature, washed in 1 × PBS /ethanol (1:1, v/v) and stored at – 20 ° C until use.



Micro computed tomography(Micro-CT,微计算机断层扫描技术),又称微型CT、显微 CT,是一种非破坏性的3D成像技术,可以在不破坏样本的情况下清楚了解样本的内 部显微结构。它与普通临床的CT最大的差别在于分辨率极高,可以达到微米 (µm) 级别,目前国内一家自主研发Micro-CT的公司已经将分辨率提高到0.5µm,具有良好 的 "显微"作用。Micro-CT可用于医学、药学、生物、考古、材料、电子、地质学等 领域的研究。







B:Sediment push core; C: reconstruction of sediment vertical section using  $\mu$ CT images.



- DNA extraction from bulk sediments PowerSoil DNA isolation kit
- Amplification of partial 16S rRNA genes
- Quality trimming and sequence processing software package BBmap v36.92 MiSeq SOP
- Diversity analysis

The alpha diversity was studied by phylotype-based Chao1 (Chao, 1984) and inverse Simpson (Simpson, 1949), The beta diversity was studied by phylotype-based comparative  $OTU_{0.97}$  presence/absence and phylogenetic measure of weighted and unweighted UniFrac.



#### Total cell counts

cells collection (ultrasonication)—filter—staining(Acridine Orange)—observition and count

➢ Glass slides for microscopy of sand grains



Figure S2: Schematic drawing of customized glass slide for visualization of microbial cells on sand grains using inverse confocal laser scanning microscopy.

A, slide preparation; B, sample visualization using the inverse microscope.



- SYBR green I staining
- Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH)
- Image acquisition using inverse confocal laser scanning microscopy and cell-cell distance measurements
- Calculations of cell density, colonized surface area and cells per sand grain



#### 1 Microbial colonization density on sand grains

- Microbial cell numbers in surface sediments (0–2 cm depth) from site Helgoland Roads were 1.1 ± 0.3 × 10<sup>9</sup> cm<sup>-3</sup> and thereby in the upper range as reported for other sandy sediments(Dale, 1974; Meyer-Reil et al., 1978; Llobet-Brossa et al., 1998; Rusch et al., 2003).
- The colonization density was 0.09 cells μm<sup>-2</sup> and a theoretical average distance between two cells of 3.3 μm.
- ► Based on the footprint of 0.43  $\mu$ m<sup>2</sup> for an average cell and the colonization density of 0.09 cells  $\mu$ m<sup>-2</sup>, 4% of the grain's' surface is colonized.Each sand grain is populated by 1.2 × 10<sup>4</sup>-1.1 × 10<sup>5</sup> cells (according to Eq. I; grain size 202–635  $\mu$ m).



#### 2 Visualization of microbial populations on sand grains



**Figure 1** Microbial colonization of a sand grain. Confocal laser scanning micrograph showing SYBR green I-stained microbial cells on a sand grain visualized as three-dimensional reconstruction. The grain' s surface was visualized by transmitted light microscopy. Note the bare surfaces of convex and exposed areas in contrast to protected areas dominated by macrotopography, which are densely populated by microbes.



#### Cell–cell distance measurements



Figure S4





C

Table S2: Alpha diversity parameters for single sand grains and bulk sediments based on 16S rRNA gene Illumina tag sequencing. Depicted diversity values show the mean of 25 independent calculations.  $OTU_{0.97}$  only represented by one or two sequences in the total dataset (SSO<sub>abs</sub> and DSO<sub>abs</sub>; ~0.000001% relative sequence abundance) were excluded from analysis. SSO<sub>abs</sub>, absolute single sequence  $OTU_{0.97}$ ; DSO<sub>abs</sub>, absolute double sequence  $OTU_{0.97}$  Relative single sequence  $OTU_{0.97}$  (SSO<sub>rel</sub>) are  $OTU_{0.97}$  that occur only once in the respective sample but are more sequence-abundant in other samples of the entire data set.

|        | Quality reads |                          | Subsat | mpled to 44,901 reads e | ach sample    |               |               |               |
|--------|---------------|--------------------------|--------|-------------------------|---------------|---------------|---------------|---------------|
| sample | [No.]         | observed OTU <u>0.97</u> | Chaol  | inverse Simpson         | SSOabs<br>[%] | SSOrel<br>[%] | DSOabs<br>[%] | Faith's<br>PD |
| SSG01  | 45,980        | 5,446                    | 9,231  | 69                      | 1.5           | 48.1          | 8.1           | 295           |
| SSG02  | 46,555        | 5,032                    | 7,977  | 87                      | 1.8           | 41.6          | 7.5           | 284           |
| SSG03  | 53,143        | 5,235                    | 8,673  | 85                      | 2.3           | 44.7          | 7.6           | 297           |
| SSG04  | 55,507        | 3,426                    | 5,260  | 68                      | 2.2           | 37.7          | 9.0           | 222           |
| SSG05  | 58,205        | 5,007                    | 8,764  | 114                     | 2.1           | 47.2          | 7.5           | 280           |
| SSG06  | 53,230        | 4,373                    | 7,070  | 112                     | 2.1           | 43.3          | 8.7           | 253           |
| SSG07  | 56,972        | 4,369                    | 7,327  | 103                     | 1.8           | 44.8          | 6.4           | 253           |
| SSG08  | 55,758        | 4,088                    | 7,716  | 49                      | 1.9           | 52.3          | 7.7           | 236           |
| SSG09  | 52,930        | 5,470                    | 9,742  | 128                     | 1.9           | 48.2          | 7.9           | 292           |
| SSG10  | 47,116        | 5,198                    | 8,888  | 63                      | 1.3           | 48.5          | 7.9           | 277           |
| SSG11  | 50,657        | 4,407                    | 7,180  | 92                      | 2.2           | 42.6          | 8.2           | 253           |
| SSG12  | 58,769        | 4,126                    | 7,293  | 44                      | 1.9           | 49.8          | 8.4           | 227           |
| SSG13  | 46,215        | 5,359                    | 9,787  | 82                      | 1.8           | 49.9          | 7.0           | 288           |
| SSG14  | 44,901        | 5,160                    | 9,008  | 136                     | 1.8           | 46.2          | 7.4           | 290           |
| SSG15  | 47,901        | 4,866                    | 8,783  | 78                      | 1.8           | 50.4          | 7.6           | 265           |
| SSG16  | 46,828        | 5,955                    | 9,949  | 106                     | 1.9           | 44.0          | 7.6           | 326           |
| SSG17  | 45,131        | 6,031                    | 10,692 | 58                      | 1.8           | 50.8          | 9.1           | 317           |
| bulk1  | 75,134        | 6,759                    | 13,059 | 230                     | 3.9           | 51.2          | 10.0          | 348           |
| bulk2  | 129,394       | 6,797                    | 13,119 | 215                     | 4.0           | 51.4          | 10.8          | 354           |
| bulk3  | 137,585       | 6,924                    | 14,155 | 226                     | 4.2           | 52.3          | 9.8           | 358           |

Each grain harbored a tremendous bacterial diversity as shown by 3426–6031 observed species-level  $OTU_{0.97}$ .

#### Table S3: Beta-diversity.

Genetic similarity between single sand grain and bulk sediment communities measured by UniFrac and expressed as shared phylogenetic branch length. Color code corresponds to proportion of shared branch length: low (red) to high proportion (green). Panel A. Unweighted UniFrac, B. Weighted UniFrac. Calculcations performed on OTU<sub>0.97</sub> representative sequences of subsampled data sets (N=44.901).

|       | SSG         | SSG    | SSG | SSG          | Bulk   | Bulk |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|--------|-----|--------------|--------|------|
|       | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14          | 15     | 16  | 17           | 1      | 2    |
| SSG2  | 46  |     | 2   |     |     |     |     |     |     |     |     |     |     | -           | SSG to | SSG | Bulk to bulk | SSG to | bulk |
| SSG3  | 47  | 49  |     |     |     |     |     |     |     |     |     |     |     | Min         | 3      | 9   | 54           | 39     |      |
| SSG4  | 42  | 44  | 44  |     |     |     |     |     |     |     |     |     |     | Max<br>Mean | 50     | 5   | 55<br>54     | 46     |      |
| SSG5  | 47  | 46  | 48  | 43  |     |     |     |     |     |     |     |     |     |             | 1.10   |     | 125.572.00   |        |      |
| SSG6  | 44  | 41  | 44  | 42  | 47  |     |     |     |     |     |     |     |     |             |        |     |              |        |      |
| SSG7  | 46  | 46  | 49  | 45  | 47  | 46  |     |     |     |     |     |     |     |             |        |     |              |        |      |
| SSG8  | 42  | 40  | 43  | 40  | 42  | 42  | 45  |     |     |     |     |     |     |             |        |     |              |        |      |
| SSG9  | 48  | 48  | 48  | 43  | 49  | 44  | 47  | 42  |     |     |     |     |     |             |        |     |              |        |      |
| SSG10 | 44  | 46  | 47  | 42  | 46  | 43  | 48  | 46  | 45  |     |     |     |     |             |        |     |              |        |      |
| SSG11 | 45  | 44  | 47  | 43  | 47  | 44  | 48  | 42  | 47  | 45  |     |     |     |             |        |     |              |        |      |
| SSG12 | 43  | 43  | 44  | 41  | 42  | 42  | 45  | 44  | 44  | 43  | 43  |     |     |             |        |     |              |        |      |
| SSG13 | 46  | 48  | 48  | 43  | 48  | 45  | 49  | 45  | 49  | 48  | 46  | 43  |     |             |        |     |              |        |      |
| SSG14 | 49  | 46  | 48  | 42  | 44  | 42  | 47  | 43  | 46  | 46  | 44  | 43  | 46  |             |        |     |              |        |      |
| SSG15 | 44  | 44  | 46  | 41  | 46  | 44  | 47  | 48  | 46  | 48  | 44  | 43  | 49  | 45          |        |     |              |        |      |
| SSG16 | 50  | 49  | 49  | 42  | 46  | 41  | 46  | 39  | 47  | 45  | 44  | 40  | 46  | 49          | 43     |     |              |        |      |
| SSG17 | 46  | 47  | 47  | 41  | 44  | 41  | 44  | 40  | 45  | 46  | 42  | 40  | 45  | 48          | 43     | 50  |              |        |      |
|       |     |     |     |     |     |     |     |     |     |     |     |     | -   |             |        |     |              |        |      |
| Bulk1 | 44  | 45  | 46  | 40  | 44  | 41  | 44  | 40  | 45  | 44  | 43  | 40  | 46  | 43          | 43     | 46  | 45           |        |      |
| Bulk2 | 44  | 45  | 46  | 41  | 44  | 41  | 44  | 40  | 46  | 44  | 42  | 41  | 45  | 43          | 43     | 46  | 46           | 54     |      |
| Bulk3 | 45  | 45  | 46  | 40  | 45  | 41  | 44  | 39  | 45  | 44  | 42  | 40  | 45  | 44          | 43     | 46  | 45           | 54     | 55   |

Unweighted Unifrac showed a genetic similarity of 39–50% (mean 45%) between any sand grain community confirming that these are different.

A

В

| 2             |     |     |     |     |     |     |     |     |     |     |     |     |     |             |        |     |              |        |      |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|--------|-----|--------------|--------|------|
|               | SSG         | SSG    | SSG | SSG          | Bulk   | Bulk |
|               | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14          | 15     | 16  | 17           | 1      | 2    |
| SSG2          | 70  |     | e., |     |     |     |     |     |     |     |     |     |     | ÷           | SSG to | SSG | Bulk to bulk | SSG to | bulk |
| SSG3          | 76  | 78  |     |     |     |     |     |     |     |     |     |     |     | Min         | 50     |     | 93           | 54     |      |
| SSG4          | 68  | 69  | 72  |     |     |     |     |     |     |     |     |     |     | Max<br>Mean | 85     |     | 96<br>94     | 76     |      |
| SSG5          | 78  | 71  | 82  | 68  |     |     |     |     |     |     |     |     |     |             |        |     |              |        |      |
| SSG6          | 75  | 71  | 78  | 62  | 82  |     |     |     |     |     |     |     |     |             |        |     |              |        |      |
| SSG7          | 71  | 75  | 81  | 63  | 77  | 77  |     |     |     |     |     |     |     |             |        |     |              |        |      |
| SSG8          | 55  | 62  | 64  | 50  | 60  | 63  | 72  | -   |     |     |     |     |     |             |        |     |              |        |      |
| SSG9          | 80  | 75  | 82  | 69  | 81  | 76  | 79  | 61  |     |     |     |     |     |             |        |     |              |        |      |
| SSG10         | 71  | 72  | 84  | 66  | 81  | 78  | 82  | 66  | 79  |     |     |     |     |             |        |     |              |        |      |
| SSG11         | 69  | 71  | 75  | 58  | 71  | 71  | 75  | 65  | 76  | 71  | _   |     |     |             |        |     |              |        |      |
| SSG12         | 54  | 61  | 61  | 50  | 56  | 59  | 63  | 80  | 58  | 60  | 63  |     |     |             |        |     |              |        |      |
| SSG13         | 70  | 72  | 75  | 60  | 75  | 74  | 81  | 75  | 78  | 78  | 76  | 69  |     |             |        |     |              |        |      |
| SSG14         | 70  | 76  | 75  | 60  | 70  | 71  | 85  | 72  | 76  | 75  | 77  | 65  | 79  | -           |        |     |              |        |      |
| SSG15         | 67  | 70  | 76  | 58  | 73  | 76  | 83  | 74  | 75  | 79  | 72  | 64  | 81  | 79          |        |     |              |        |      |
| SSG16         | 75  | 78  | 78  | 68  | 74  | 72  | 75  | 60  | 80  | 73  | 78  | 59  | 74  | 79          | 70     |     | _            |        |      |
| SSG17         | 66  | 67  | 74  | 66  | 74  | 70  | 71  | 59  | 69  | 77  | 61  | 53  | 66  | 67          | 69     | 68  |              |        |      |
| and an arrest |     |     |     |     |     |     |     |     |     |     |     |     |     |             |        |     |              |        |      |
| Bulk1         | 71  | 65  | 71  | 59  | 72  | 72  | 74  | 61  | 73  | 73  | 70  | 54  | 70  | 71          | 71     | 74  | 73           | _      |      |
| Bulk2         | 71  | 68  | 73  | 60  | 72  | 73  | 76  | 62  | 74  | 74  | 73  | 56  | 72  | 74          | 72     | 76  | 71           | 93     |      |
| Bulk3         | 71  | 68  | 73  | 60  | 72  | 74  | 76  | 63  | 74  | 74  | 74  | 57  | 72  | 74          | 73     | 76  | 71           | 93     | 96   |

Weighted UniFrac analysis considering  $OTU_{0.97}$  abundances resulted in a much higher genetic similarity with 50–85% (mean 71%) indicating that less abundant and rare  $OTU_{0.97}$  are mainly responsible for the observed genetic differences between sand grains.



#### 4 Core community on sand grains



#### 5 In situ identification of microbial communities on sand grains

| Probe name          | Target                                                                             | Sequence (5' - 3')              | FA<br>[%] <sup>1</sup> | Target   | Reference                          |
|---------------------|------------------------------------------------------------------------------------|---------------------------------|------------------------|----------|------------------------------------|
| EUB338 I            |                                                                                    | GCT GCC TCC CGT AGG AGT         | 35                     | 16S rRNA | Amann et al., 1990                 |
| EUB338 II           | Most Bacteria                                                                      | GCA GCC ACC CGT AGG TGT         | 35                     | 16S rRNA | Daims et al., 1999                 |
| EUB338 II           |                                                                                    | GCT GCC ACC CGT AGG TGT         | 35                     | 16S rRNA | Daims et al., 1999                 |
| ARCH915a            | Archaea                                                                            | GTG CTC CCC CGC CAA TTC CT      | 35                     | 16S rRNA | Stahl and Amann, 1991              |
| CREN537             | Marine Group I Thaumarcheota                                                       | TGA CCA CTT GAG GTG CTG         | 20                     | 16S rRNA | Teira et al, 2004                  |
| EUK516              | Eukarya                                                                            | ACC AGA CTT GCC CTCC            | 0                      | 18S rRNA | Amann et al., 1990                 |
| NON338              | nonsense probe                                                                     | ACT CCT ACG GGA GGC AGC         | 35                     | 16S rRNA | Wallner et al., 1993               |
| GAM42a <sup>z</sup> | Gammaproteobacteria                                                                | GCC TTC CCA CAT CGT TT          | 35                     | 23S rRNA | Manz et al., 1992                  |
| GAM42a_T1038_G10312 | Xanthomonadaceae                                                                   | GCC TTT CCA CAT GGT TT          | 35                     | 23S rRNA | Siyambalapitiya and Blackall, 2005 |
| GAM42a_T10382       | Xanthomonadaceae                                                                   | GCC TTT CCA CAT CGT TT          | 35                     | 23S rRNA | Siyambalapitiya and Blackall, 2005 |
| BET42a <sup>2</sup> | Betaproteobacteria                                                                 | GCC TTC CCA CTT CGT TT          | 35                     | 23S rRNA | Manz et al., 1992                  |
| JTB1270             | Woeseiaceae/JTB255                                                                 | GAG CTT TAA GGG ATT AGC GCA CCA | 40                     | 16S rRNA | Dyksma et al., 2016a               |
| ыTB1270             | Unlabeled helper oligo, used with<br>JTB1270                                       | TTG CTG GTT GGC AAC CCT CTG TAT | 40                     | 16S rRNA | Dyksma et al., 2016a               |
| CF968               | Bacteroidetes                                                                      | GGT AAG GTT CCT CGC GTA         | 30                     | 16S rRNA | Acinas et al., 2015                |
| NTSPA712            | Nitrospirae                                                                        | CGC CTT CGC CAC CGG CCT TCC     | 50                     | 16S rRNA | Daims et al., 2001                 |
| cNTSPA712           | Unlabeled competitor used with<br>NTSPA712                                         | CGC CTT CGC CAC CGG TGT TCC     |                        | 16S rRNA | Daims et al., 2001                 |
| NM645 <sup>3</sup>  | Nitrosospira, Nitrosovibrio, some<br>Nitrosomonas, uncultured<br>Nitrosomonadaceae | GCC ACA CTC TAG YCT TGT         | 20-30                  | 16S rRNA | This study                         |
| clNM645             | Unlabeled competitor used with NM645                                               | GCC ACA CTC TAG CCT TGC         |                        | 16S rRNA | This study                         |
| c2NM645             | Unlabeled competitor used with NM645                                               | GCC ACA CTC CAG CCT TGC         |                        | 16S rRNA | This study                         |
| NM478 <sup>3</sup>  | Nitrosospira, Nitrosovibrio, uncultured<br>Nitrosomonadaceae, some Acidobacteria   | TCT TCC GGT ACC GTC AGT A       | 20-30                  | 16S rRNA | This study                         |
| cNM478              | Unlabeled competitor used with NM478                                               | TCT TCC GGT ACC GTC AGM A       |                        | 16S rRNA | This study                         |
| PLA464              | Planctomycetes except Phycisphaerae                                                | GAC TTG CAT GCC TAA TCC         | 30                     | 16S rRNA | Neef et al., 1998                  |
| PHYC309             | Phycisphaerae                                                                      | AGT GTC TCA GTC CCG ATG CGG CG  | 35                     | 16S rRNA | Probandt et al., 2017              |

Table S1. Oligonucleotide probes used for CARD-FISH and FISH.

formamide concentration in the hybridization buffer.

Probes GAM42a, GAM42a\_T1038\_G1031 and GAM42a\_T1038 were used as "GAM42a-mix" at a molar ratio of 1:1:1 together with Bet42a as competitor.

<sup>3</sup>: Probe NM645 is recommended to use. It gives brighter signals than NM478 and has no not-target hits.
<sup>4</sup>: Probe Pla46 was used HRP-labeled or directly labeled with four Alexa594 dye molecules using CLICK chemistry



**Figure 4** Direct visualization of taxa on sand grains using CARD-FISH and confocal laser scanning microscopy.

Gammaproteobacteria (including Woeseiaceae/JTB255), Planctomycetes and Bacteroidetes (Figures 4c–f) were most abundant.

- each sand grain investigated in this study was the habitat for around 10<sup>5</sup> cells representing several thousand species.
- The average distance between any two cells on a sand grain in protected areas was  $0.5 \pm 0.7 \mu m$  and therefore 100-fold shorter than the average distance between cells in the water column.
  - Confirming our original hypothesis, the diversity and community composition differ more strongly between sand grains than between replicates of the bulk sediment.



#### The Reasons for Choosing This Paper

- $\succ$  the diversity of meathods
- CARD-FISH and confocal laser scanning microscopy





# Thanks for your attention!



厚德博学 止于至善