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Adipocyte exosomes induce transforming growth @Cmm 3
factor beta pathway dysregulation in hepatocytes:
a novel paradigm for obesity-related liver disease
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ABSTRACT

Background: The pathogenesis of nonalcoholic fatty liver disease (NAFLD) has been atirib-
uted to increased systemic inflammation and insulin resistance mediated by visceral ad-
ipose tissue (VAT), although the exact mechanisms are undefined. Exosomes are
membrane-derived wesicles containing messenger RNA, microRNA, and proteins, which
hawve been implicated in cancer, neurodegenerative, and autoimmune diseases, which we
postulated may be involved in obesity-related diseases. We isolated exosomes from VAT,
characterized their content, and identified their potential targets. Targets included the
transforming growth factor beta (TGF-p) pathway, which has been linked to NAFLD. We
hypothesized that adipocyte exosomes would integrate into HepG2 and hepatic stellate cell
lines and cause dysregulation of the TGF-p pathway.

Methods: Exosomes from VAT from obese and lean patients were isolated and fluorescently
labeled, then applied to cultured hepatic cell lines. After incubation, culture slides were
mmaged to detect exosome uptake. In separate experiments, exosomes were applied to
cultured cells and incubated 48-h. Gene expression of TGF-p pathway mediators was
analyzed by polymerase chain reaction, and compared with cells, which were not exposed
t0 EXOS0MmES.

Results: Fluorescent-labeled exosomes integrated into both cell types and deposited in a
perinuclear distribution. Exosome exposure caused increased tissue inhibitor of matrix
metalloproteinase-1 (TIMP-1) and integrin ovf-5 expression and dedeased matrix
metalloproteinase-7 and plasminogen activator inhibitor-1 expression in to HepG2 cells
and increased expression of TIMP-1, TIMP-4, Smad-3, integrins avf-5 and avf-8, and maftrix
metalloproteinase-9 in hepatic stellate cells.
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Fig. 1 — Immunofluorescence microscopy images of HepG2 cells after exposure to fluorescent-labeled exosomes.
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Fig. 2 — Immunofluorescence microscopy images of HHSteC cells after exposure to fluorescent-labeled exosomes.
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Table 1 — Changes in expression of TGF-p pathway mediators in HepG2 cells exposed to visceral adipocyte exosomes (Data
represent mean fold change + standard deviation).

Mediator 0.1% dilution 1% dilution Both doses
Fold change P Fold change P Fold change P
TIMP-1
Obese 1 282+ 191 024 2p4 =+ 114 0.04 273+ 141
Obese 2 1.74 + 0.83 0.31 201+ 091 0.16 194+ 0.7%
Obese 3 3131121 0.08 478 + 066 0.004 436+ 0.99
Obeze 4 4 59 £+ 0003 0.01 336 4+ 027 0.01 402+ 078
All ohese 3.24 + 154 0.008 318+ 134 0.003 321+ 138 /P
Lean 1 751+ 105 0.002 093 + 148 029 532+ 3.87
MMP-7
Obese 1 0.44 + Q07 0,45 041 + 020 0.41 042 + 0.14 0.0008
Obese 2 0.84 £+ 0003 0.6 051+ 039 069 051 + 0.39 0.40
Obese 3 056 + 034 0.62 1.07 + 023 0.85 095+ 0.16 0.62
Obese 4 061+ 028 0.51 097 + 031 0.74 085+ 031 0.41
All chese 0.50 + 010 0.31 0.74 + 038 0.70 .66 + (.33 \l/ 0.03
Lean 1 0.96 £ 023 0.55 117+ 078 0.94 1.07 £ 0.1 0.80
PAl-1
Obese 1 050+ 010 0.06 108 + 026 0.80 0.79 + 0.36 0.24
Obese 2 032 + 0.06 0.03 032 + 0.06 0.03
Obese 3 050+ 018 0.17 0.67 + 013 0.15 0.60 £ 0.16 0.08
Obese 4 0.82 £ Q114 0.38 0.76 + 022 0.29 0.79 £ 0.17 030
All obese 0.62 £ 020 0.09 0.74 + 032 0.18 070+ 0.7 \l/ 0.003
Lean 1 1.00 + 005 0.99 111+ 019 0.66 106 + 013 0.80
Integrin avi-5
Obese 1 160+ 024 0.1+ 179+ 02 0.12 171+ 02 014
Obese 2 0,94 + 048 0.69 0.94 + 0.48 0.69
Obese 3 1.31 + 042 0.19 0.95 &+ 0.38 0.74 104+ 035 0.96
Obese 4 200+ 011 0.13 1.34 & 045 0.43 168+ 048 0.11
All chesge 1.75 + 032 0.13 1.26 =+ 049 0.53 144 + 0459 /]\ 0.027
Lean 1 117 + 025 0.56 117 + 0.5 0.56

Bold values indicate statistical significance.
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Table 2 — Changes in expression of TGF-p pathway
mediators in HHSteC cells exposed to visceral adipocyte

exosomes (Data represent mean fold change + standard

deviation).

Subject 0.1% dilution 1% dilution
Fold change /?\ Fold dlangf/ !x

TIMP-1 2.07 £0.72 1.51 +£ 0.5/

TIMP-4 1.43 =047 1.42 +0.33

Smad-3 1.27 £ 0.22 1.19+0.23

Integrin avf}-5 1.69 + 0.46 1.29 + 0.26

Integrin av{i-8 2.06 +0.90
MMP-9 2.13 £ 0.39

1.59 + 0.67 0.02
1.32 + 0.62 0.38
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Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in @Cmsmk
3T3-L1 cells
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Hypoxia occurs within adipose tissues as a result of adipocyte hypertrophy and is associated with adipo-
cyte dysfunction in obesity. Here, we examined whether hypoxia affects the characteristics of adipocyte-
derived exosomes. Exosomes are nanovesicles secreted from most cell types as an information carrier
between donor and recipient cells, containing a variety of proteins as well as genetic materials. Cultured
differentiated 3T3-L1 adipocytes were exposed to hypoxic conditions and the protein content of the exo-
somes produced from these cells was compared by quantitative proteomic analysis. A total of 231 pro-
teins were identified in the adipocyte-derived exosomes. Some of these proteins showed altered
expression levels under hypoxic conditions. These results were confirmed by immunoblot analysis. Espe-
cially, hypoxic adipocyte-released exosomes were enriched in enzymes related to de novo lipogenesis
such as acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and fatty acid synthase (FASN).
The total amount of proteins secreted from exosomes increased by 3-4-fold under hypoxic conditions.
Moreover, hypoxia-derived exosomes promoted lipid accumulation in recipient 3T3-L1 adipocytes, com-
pared with those produced under normoxic conditions. FASN levels were increased in undifferentiated
3T3-L1 cells treated with FASN-containing hypoxic adipocytes-derived exosomes. This is a study to char-
acterize the proteomic profiles of adipocyte-derived exosomes. Exosomal proteins derived from hypoxic
adipocytes may affect lipogenic activity in neighboring preadipocytes and adipocytes.

© 2014 Elsevier Inc. All rights reserved.
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Fig. 1. Characterization of adipocyte-derived exosomes under hypoxic conditions. (A) Serum exosomes were purified from 7-week-old WT (+/+) and ob/ob mice using
ExoQuick™ reagent and exosomal proteins per unit serum were determined. The graph represents the ratio of protein in serum exosomes for each group. Values are
mean £ 5D (eachn = 3).*P< 0.01.(B) Data in (A) are corrected by body weight. Values are mean + SD. (C) Flow chart of differential centrifugation-based protocol for exosome
purification from culture supernatants. (D) Expression level of HIF-1m protein in 3T3-L1 preadipocytes and adipocytes cultured under normoxic or hypoxic conditions for
24 h. (E) Morphology of 3T3-L1 preadipocyte- and adipocyte-derived exosomes from normoxic or hypoxic conditions visualized by electron microscopy. Scale bar, 100 nm. (F)
Protein concentrations in preadipocyte- and adipocyte-derived exosomes generated under normoxic or hypoxic conditions. The graph represents the ratio of normoxic
exosomal proteins to hypoxic proteins. Values are mean+ 5D (n =3). "P< 0.01. 3T3-L1 adipocytes 10 days post differentiation were used for assays in (C)-(F).
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Fig. 1. Characterization of adipocyte-derived exosomes under hypoxic conditions. {A) Serum exosomes were purified from 7-week-old WT (+/+) and ob/ob mice using
ExoQuick™ reagent and exosomal proteins per unit serum were determined. The graph represents the ratio of protein in serum exosomes for each group. Values are
mean £50 {eachn = 3)."P< 001. (B) Data in {(A) are corected by body weight. Values are mean + 5D, (C) Flow chart of differential centrifugation-based protocol for exosome
purification from culture supernatants. (D) Expression level of HIF-12 protein in 3T3-L1 preadipocytes and adipocytes cultured under normoxic or hypoxic conditions for
24 h. (E) Morphology of 3T3-L1 preadipocyte- and adipocyte-derived exosomes from normoxic or hypoxic conditions visualized by electron microscopy. Scale bar, 100 nm. (F)
Protein concentrations in preadipocyte- and adipocyte-derived exosomes generated under normoxic or hypoxic conditions. The graph represents the ratio of normoxic
exosomal proteins to hypoxic proteins. Values are mean + 5D (n = 3). *P < 0.01. 3T3-L1 adipocytes 10 days post differentiation were used for assays in (C)-{F).
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Fig. 2. Proteomic analysis of adipocyte-derived exosomes from normoxic or hypoxic conditions. {A) Comparison of proteins identified in adipocyte-derived exosomes under
normoxic or hypoxic conditions. A total of 231 proteins were identified; a ratio under 0.80 was considered a decrease, while that over 1.20 was considered an increase. (B)
Metabolic pathways leading to fatty acid production and its related enzymes. (C) FASN, ACC, and G6PD expression levels in whole cell lysates (WCL) and exosomes by
Western blot analysis. ImmunoGold is a control blot of exosomal proteins. (D) FASN, G6PD, and GAPDH expression levels in serum exosomes from 7-week-old WT (+/+) and
ob/ob mice by Western blot analysis.



Table 1

Up-regulated proteins in hypoxic adipocyte-derived exosomes, compared to control (>1.20-fold).
Accession Protein names Unique peptdes detected Sequencecoverage® 116:114 (Nx:Hx) Expectation-
numbers value
gi|93102409 Fatty acid synthase 18 19 1.42 1.70E-22
gi|31981562 Pyruvate kinase isozymes M1/M2 isoform 1 6 22 1.37 1.32E-05
gi|338594382 Elongation factor 2 5 8 1.53 1.34E-05
gi|70794816 Uncharacterized protein LOC433182 5 21 1.34 3.62E-05
gi|6679937 Glyceraldehyde-3-phosphate dehydrogenase 4 21 1.51 1.91E-05
gi|6678483 Ubiquitin-like modifier-activating enzyme 1 isoform 1 4 10 1.51 2.67E-06
gi|6755901 Tubulin alpha-1A chain 4 18 1.41 5.03E-05
gi|309264022 PREDICTED: 40S ribosomal protein SA-like 3 19 1.88 2.15E-04
gi|31980648 ATP synthase subunit beta, mitochondrial precursor 3 10 1.81 1.04E-03
gi|52353955 D-3-phosphoglycerate dehydrogenase 3 8 1.68 8.92E-03

This table included up-regulated proteins having at least 3 unique peptides with =99% confidence using ProteinPilot 2.0 software. Accession numbers are from the NCBI
database. For additional information, see Supplementary Tables 14 and 2).
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Fig. 3. Increased iipid accumulation in adipocytes treated with hypoxic adipocyte-derived exosomes. {A) Time-dependent uptake of adipocyte-derived exosomes in 3T3-L1
preadipocytes. PKH26-labeled exosomes (red) were added to 3T3-L1 cells and incubated as indicated. Cells were fixed and stained for nuclei (DAPI, blue). (B) Lysates from
3T3-L1 preadipocytes after incubation with exosomes from differentiated 3T3-L1 adipocytes cultured under normoxic or hypoxic conditions for 48 h were subjected to
Western blot analysis using the indicated antibodies (FASN, ACC, and G6PD). (C) HEK 293T cells were transfected with plasmid encoding Halo-FASN. In Western blotting
analysis, the same amounts of cell lysates (20 pg) and exosomes (1 pg) were loaded into the indicated lanes. (D) Lysates from 3T3-L1 preadipocytes after incubation with
exosomes from HEK 293T cells transfected with plasmid encoding Halo-FASN were subjected to Western blot analysis using the anti-FASN antibody. (E) 3T3-L1 cells were
induced to differentiate after confluence with a cocktail of hormones/steroids as described in the Section 2 for 6 days. 100 pg of adipocyte-derived exosomes from normoxic

or hypoxic conditions was added to culture medium every 2 days. Original magnificaiton 100x. I



Coenzyme metabolic process

(GEPD)
Carbohydrate metabolic process l Lipid metabolic process | .
(GAPDH, ACC) : (FASN) ol Bk
B Preadipocytes Adipocytes
o — O O
q:ﬁ:h GD":F O
(G6PDH) < (FASN)

Over-loaded adipocytes
(Hypoxia)

Fig.4, Schematic representation of this study. (A) Relationship between ACC, G6PD, and FASN and de novo lipogenesis. (B) Promation of lipid accumulation in preadipocytes
or small adipocytes due to hypaxic adipocyte-derived exosomes,







