文章编号:1000-2367(2019)05-0085-06

Ce³⁺-Nd³⁺共掺 Y₃Al₅O₁₂发光材料的合成及其 近红外量子剪裁特性研究

袁光辉1,台玉萍2,张永光3

(1.安康学院化学化工学院;新型材料-锌基纳米材料研究中心,陕西安康725000;2.河南科技大学化工与制药学院, 河南洛阳471023;3.河北工业大学能源装备材料技术研究院,天津300130)

摘 要:以高温固相法合成一系列 Ce³⁺-Nd³⁺ 共掺 Y₃Al₅O₁₂ (YAG)发光材料.通过荧光光谱测试证明,在 YAG 基质中 Ce³⁺-Nd³⁺之间发生宽谱高效近红外量子剪裁,能量传递机理为合作能量下转换.在460 nm 波长激发 下,Ce³⁺离子吸收一个可见光子跃迁至5d₁ 能级,然后将自身能量传递给两个邻近的 Nd³⁺,进而发射出两个近红 外光子.对样品的荧光衰减曲线分析可知,Ce³⁺-Nd³⁺之间的量子效率高达177.8%.通过 Ce³⁺-Nd³⁺之间的量子剪 裁,可将太阳光谱中能量较高的紫外-可见波段转换为近红外波段,有利于太阳光谱更好地被晶硅太阳能电池吸收 和利用.

关键词:量子剪裁;Ce³⁺-Nd³⁺共掺;合作能量下转换;晶硅太阳能电池

中图分类号:069

文献标志码:A

近年来,煤炭、石油、天然气等传统化石能源面临枯竭且带来严重的环境污染问题,人们逐渐将注意力转 向风能、太阳能、潮汐能等新一代清洁能源.太阳能因清洁无污染、储量巨大、不受地域限制等优势而备受关 注.晶硅太阳能电池是当前使用最广泛的利用太阳能的装置,然而实际生产中电池的光电转换效率仅达 19%,远远低于理论上的最大值 31%.导致晶硅太阳能电池效率低下的一个重要原因是光谱错配.晶硅太阳 能电池的带隙宽度为~1.12 eV,对太阳光谱中 900~1 100 nm 的近红外波段有较强的响应,而对于能量较 高、波长较短的可见-紫外波段,大部分的能量以晶格热振动的形式损耗,未能被电池充分利用从而导致光电 转换效率低下^[1].根据 T. Trupke 所提出的下转换模型^[2],若在电池表面覆盖一下转换层,通过量子剪裁将 太阳光谱中的一个紫外-可见光子转换为两个 900~1 100 nm 的近红外光子,则可被晶硅太阳能电池充分吸 收利用,从而提高其转换效率.

常见的量子剪裁发光材料是通过稀土离子共掺来实现的.在稀土离子中,由于 Yb³⁺能级结构简单,且发 射光位于 900~1 100 nm 的近红外区域,响应晶硅太阳电池的最强吸收波段,因此近年来的研究主要集中于 RE-Yb³⁺共掺体系.已见诸报道的有 Ce³⁺-Yb^{3+[3-5]}, Eu²⁺-Yb^{3+[6-7]}, Tb³⁺-Yb^{3+[8-10]}, Pr³⁺-Yb^{3+[11-13]}, Nd³⁺-Yb^{3+[14-15]}等共掺对,掺杂基质有粉末、薄膜、玻璃、陶瓷等.在诸多共掺中,Ce³⁺属于典型的 4 $f \rightarrow 5d$ 宇 称允许跃迁,具有较宽的吸收截面,且发光峰的位置随周围晶体场的改变而发生变化,因此能对太阳光谱中 能量较高的波段进行宽谱吸收.然而 Yb³⁺在近红区的发光强度较弱,且具有 Yb-O 之间的电荷跃迁,从而未 能对电池中的载流子进行有效激发,还会限制 Ce³⁺-Yb³⁺之间的能量转换效率^[4].此外,Ce³⁺-Yb³⁺的掺杂基

收稿日期:2018-11-06;修回日期:2018-12-13.

基金项目:国家自然科学基金(21406052);陕西省科技厅面上项目(2019JM-229);河南省高等学校科研项目 (18B150005);安康市科技局工业攻关项目(2018AK01-12);安康学院学科交叉融合项目(2017AYJC01);安康 学院高层次人才启动项目(2016AYQDZR05).

作者简介:袁光辉(1982-),男,河南睢县人,安康学院副教授,博士,主要研究方向为锂电复合材料制备及电化学性能研究,E-mail:chem_yuan@163.com.

通信作者:张永光(1986-),男,辽宁沈阳人,河北工业大学教授,博士,博士生导师,主要从事功能材料制备及性能研究, E-mail:yongguangzhang@hebut.edu.cn.

质也存在声子能量高、透明度低、热稳定性差等缺点而限制了其在晶硅太阳能中的应用.Nd³⁺是另一种具有 近红外发光的稀土离子,与Yb³⁺相比,Nd³⁺的发光强度大且覆盖范围宽(850~1100 nm),发光峰值位于 1064 nm处,能有效激发晶硅太阳能电池中的载流子,且Nd³⁺不会发生Nd-O之间的电荷跃迁,能有效弥补 Yb³⁺的不足,因此,开发Ce³⁺-Nd³⁺量子剪裁发光材料是提高晶硅太阳能电池转换效率的一条重要途径.

本实验主要探讨 Ce³⁺-Nd³⁺共掺 Y₃Al₅O₁₂(YAG)近红外发光材料的合成及其荧光量子剪裁特性.在 YAG 基质中,Ce³⁺的激发峰位于 300~500 nm 范围内,处于太阳光谱中强度较大的紫外-可见波段.通过 Ce³⁺-Nd³⁺共掺可对太阳光谱中 300~500 nm 部分进行宽谱吸收,进而量子剪裁为 850~1 100 nm 的近红 外光子以被晶硅太阳电池充分吸收利用.因此,YAG: Ce³⁺,Nd³⁺近红外量子剪裁发光材料有望用于晶硅太 阳能电池的下转换层,降低电池对太阳光谱的热损耗而提高光电转换效率.

1 实 验

1.1 样品制备

以 Y₂O₃(纯度 99.9%)、Al₂O₃(分析纯)、CeO₂(纯度 99.9%)、Nd₂O₃(纯度 99.9%)、H₃BO₃(分析纯)为 原材料,通过高温固相反应方法制备 YAG:Ce³⁺,Nd³⁺量子剪裁发光材料.按精确的化学计量比,准确称量 相应的原材料置于玛瑙研钵中研磨 1~2 h,加入 5%(质量分数)的 H₃BO₃ 作为助熔剂.然后将充分混匀的 原材料转移到刚玉坩埚中,置于管式马弗炉中在氩气气氛下缓慢升温至 1 500 °C,保温 2~3 h.随炉冷却研 磨后即可得到一系列 YAG:1.0%Ce³⁺(摩尔分数,下同),x% Nd³⁺(x=0,1.0,2.0,5.0,10.0)样品,分别命名 为 S0,S1,S2,S3 和 S4.此外,还采用相同方法合成了 YAG:1.0% Nd³⁺ 单掺样品.

1.2 样品性能表征

采用 X 射线衍射仪(Bruker D8 ADVANCE 型)对所得样品的晶型及结构进行分析,扫描范围为 10~70°.采用英国 Edinburgh 公司的 FLSP920 型荧光光谱仪对样品的荧光性能进行测试,所有测试均在室温下进行.

2 结果与分析

2.1 样品的晶型及结构分析

图 1 是所得样品的 XRD 图谱,与 YAG 对应的 XRD 卡片(JCPDS No. 34-0379)已经插入图中.从图 1 (a)中可观察到,所有样品都与 XRD 卡片吻合良好,为立方晶系的 YAG 晶体,且未见其他杂峰出现.图 1(b) 为最强衍射峰的局部放大图,从放大图中可清晰地观察到,随着 Nd³⁺掺杂浓度的增加,样品的衍射峰逐渐向 较小的衍射角 θ 偏移.根据布拉格和密勒指数可得^[5]:

$$a = \frac{\lambda \sqrt{h^2 + k^2 + l^2}}{2\sin \theta},\tag{1}$$

其中 λ 为 X 射线衍射仪中铜靶辐射源的波长(λ =0.154 06 nm),(h,k,l)为晶体的密勒指数, θ 为衍射角,a 为晶格常数.对某一固定的衍射峰而言,其 λ 及(h,k,l)的值均为常数.图 1 中随 Nd³⁺离子掺杂浓度的增加, 样品的衍射角 θ 逐渐减小,这是因为在 YAG:Ce³⁺,Nd³⁺样品中,Ce³⁺和 Nd³⁺取代了 YAG 晶体中部分 Y³⁺ 的位置,Ce³⁺(102.0 pm)和 Nd³⁺(98.3 pm)的半径大于 Y³⁺的离子半径(90.0 pm),导致晶格常数 a 增大,进而 引起衍射角 θ 减小,这说明 Ce³⁺和 Nd³⁺已均匀地掺杂到 YAG 基质中,为二者之间的能量传递提供了可行性.

2.2 发射光谱和激发光谱分析

图 2 为 Ce³⁺ 单掺 YAG 基质的激发及发射光谱.由图 2(a)可看出,在 531 nm 波长激发下,Ce³⁺离子在 YAG 基质中的激发光谱为 300~500 nm 的宽峰,峰值分别位于 339 nm 和 460 nm 处,是由 Ce³⁺离子的 4 $f \rightarrow 5d$ 能级跃迁而引起的.由于 Ce³⁺离子的激发峰范围较宽,可对太阳光谱进行充分地吸收利用.Ce³⁺ 单掺 YAG 基质的发射光谱如图 2(b)所示,在 460 nm 激发波长的作用下,Ce³⁺的发射光谱为一位于可见光区 域的宽峰(450~650 nm),峰值位于 531 nm,是由处于激发态的 Ce³⁺ 跃迁至基态(5 $d \rightarrow 4f$)而产生.Nd³⁺ 单掺 YAG 基质的激发光谱则示于图 2(c),在 YAG 基质中 Nd³⁺ 的激发光谱覆盖范围为 500~700 nm,最强激

发峰分别位于 518 nm 和 576 nm,与 Ce³⁺的发射光谱(450~650 nm,峰值 531 nm)有较好的重叠.根据 Forster-Dexter 理论^[16-17],在光谱重叠的条件下,Ce³⁺离子能对 Nd³⁺离子起到良好的敏化作用,即二者之间发 生有效能量传递.

为进一步证明 Ce³⁺-Nd³⁺之间的能量传递 过程,分别测试了 Ce3+-Nd3+ 共掺样品的激发及 发射光谱,结果见图 3.图 3(a)为样品 S1 的激发 光谱,分别对 S1 样品中 531 nm 和 1 064 nm 处 的发光峰进行监测,可得到形状及峰值吻合良好 的两条激发光谱,最强峰分别位于 339 nm 和 460 nm 处,如上所述,这两条激发峰均是由 Ce^{3+} 的 4*f*→5*d* 跃迁引起的.对 Nd³⁺的发射峰 进行监测而观察到由 Ce3+ 引起的激发光谱,进 一步证明了 Ce³⁺ 与 Nd³⁺ 存在有效的能量传递 过程[4,18].此外,与太阳光谱相比较,这两条激发 光谱与太阳光谱最强辐射相对应,因此可对太阳 光谱中强度最大的波段进行宽谱吸收,再通过 Ce³⁺-Nd³⁺之间的能量传递而加以充分利用,减 少载流子复合引起的能量损失.图 3(b)为 Ce³⁺-Nd³⁺共掺(S0-S4)在可见区及近红外区的发射 光谱,在激发波长为460 nm 的测试条件下,可

(a) Ce³⁺ 单掺样品 (YAG:1.0% Ce³⁺) 中 Ce³⁺ 的激发光谱
 (λ_{em}=531 nm); (b) Ce³⁺ 的发射光谱 (λ_{ex}=460 nm);
 (c) Nd³⁺ 单掺样品 (YAG:1.0% Nd³⁺) 中 Nd³⁺ 的激发光谱
 (λ_{em}=1 064 nm).

明显的观察到,随 Nd³⁺掺杂浓度的增加,Ce³⁺在可见光区域的发射光谱强度显著降低,与此相反,Nd³⁺在近 红外区的发光强度则明显提高.当 Nd³⁺摩尔分数增至 5%时,其在近红外区的发光强度达到最强,继续增加 Nd³⁺浓度,则发射光谱强度由于浓度猝灭而降低.由于在不同样品中 Ce³⁺的摩尔分数 1%固定不变,所以共 掺样品的发射光谱强度变化是由 Ce³⁺-Nd³⁺之间的能量传递引起的,即 Ce³⁺处于 5*d* 激发态后将自身能量 部分传递给 Nd³⁺,使自身发光强度降低,同时增加了 Nd³⁺的激发态布居而引起发光强度增大.

2.3 能量传递机理分析

图 4 所示是 Ce³⁺和 Nd³⁺的能级结构及二者的能量传递机理示意图.在 YAG 基质所在的晶体场中, Ce³⁺离子属于典型的 4 $f \rightarrow 5d$ 允许跃迁,因此其谱带为宽谱且位置随所处晶体场的改变而变化,同时,在 YAG 基质中 Ce³⁺的 5d 激发态发生能级分裂(5d₁和 5d₂).在入射光的照射下,Ce³⁺离子吸收一个紫外光子 而从基态跃迁至 5d₂ 激发态,再经无辐射跃迁弛豫至 5d₁能级(高).同时,处于基态的 Ce³⁺还可吸收一可见 光子而直接跃迁至 5d₁能级(高).这两种跃迁均增强了 Ce³⁺:5d₁能级(高)的布居.Ce³⁺:5d₁能级(高)对应 的能量为 20 000 cm⁻¹左右,约为 Nd³⁺:⁴F_{3/2}→⁴I_{11/2}跃迁所需能量(约 9 390 cm⁻¹)的两倍.因此,在激发波长 为 460 nm 的情况下,一个处于 $5d_1$ 能级(高)的 Ce³⁺把自身能量传递给两个临近的 Nd³⁺离子,并使其吸收 能量后布居于⁴F_{3/2}而发生⁴F_{3/2}→⁴I_{11/2}跃迁,发射出 1 064 nm 的近红外光,即二者之间发生了有效的量子剪 裁.由于 Ce³⁺: $5d_1$ (高)→4*f* 跃迁过程中无中间能级,所以它们之间的能量传递机理应为合作能量下转换.该 能量传递机理在 Ce³⁺-Yb³⁺、Eu³⁺-Nd³⁺等共掺体系中已见诸报道^[18-19].该量子剪裁发光材料能将太阳光谱 中能量较高的一个紫外光子切割为两个能量较低的近红外光子,从而被晶硅太阳电池充分吸收利用而降低 热损耗,有望提高电池的光电转换效率.

图 3 监测 S1 样品中 Ce³⁺:5d₁→4f 跃迁(531 nm 发光)和 Nd³⁺:4F_{3/2}→4I_{11/2} 跃迁(1 064 nm 发光)所得激发光谱(a)和 460 nm 波长激发下,S0-S4 样品在可见光和近红外区域发光强度的变化(b)

Fig. 3 Excitation spectra of S1 monitored by $Ce^{3+}:5d_1 \rightarrow 4f$ transition ($\lambda_{em}=531$ nm) and $Nd^{3+}:^2F_{3/2} \rightarrow ^4I_{11/2}$ transition ($\lambda_{em}=1$ 064 nm)(a) and emission spectrum of S0-S4 in visible and NIR region under 460 nm excitation(b)

2.4 量子剪裁效率分析

为进一步计算 Ce³⁺-Nd³⁺之间的 量子剪裁效率,测量了 Ce³⁺ 单掺及 Ce³⁺-Nd³⁺共掺样品的荧光衰减曲线, 如图 5 所示.样品的荧光寿命可用(2) 式来进行计算:

$$\tau = \frac{1}{I_0} \int_0^\infty I(t) dt, \qquad (2)$$

其中 I_0 是时间 t=0 时 Ce³⁺在 531 nm 处的发光强度, I(t) 是时间为 t 时 Ce³⁺在 531 nm 处的发光强度,样品的 荧光寿命通过计算衰减曲线下的积分 面积可得出.对于 Ce³⁺ 单掺样品(S0),

图 4 Ce³⁺和Nd³⁺在YAG基质中的能级示意图及Ce³⁺→Nd³⁺之间的能量传递机理 Fig. 4 Energy-level diagram of Ce³⁺ and Nd³⁺ in YAG matrix, which illustrates the probable energy transfer mechanism between Ce³⁺ and Nd³⁺

其荧光寿命为 12.2 μ s,且荧光衰减曲线表现为单指数形式.随着 Nd³⁺的引入,Ce³⁺离子的能量迅速传递给 Nd³⁺离子,从而引起自身荧光寿命的衰减,样品的荧光寿命迅速衰减至 9.4,7.6,4.2 和 2.7 μ s(S1-S4),曲线 也逐渐偏离单指数形式.由于 Ce³⁺摩尔分数固定为 1.0%,因此其在 531 nm 处荧光寿命的衰减归因于引入 了新的能量传递途径,即 Ce³⁺-Nd³⁺的合作能量下转换^[3,18].

 Ce^{3+} -Nd³⁺之间的能量传递效率 η_{ETE} 可用(3)式进行计算:

$$\eta_{\text{ETE}} = 1 - \frac{\int I_{x\%, \text{Nd}^{3+}} dt}{\int I_{0\%, \text{Nd}^{3+}} dt} = 1 - \frac{\tau_{x\%, \text{Nd}^{3+}}}{\tau_{0\%, \text{Nd}^{3+}}},$$
(3)

式中 $I_{_{0\%,Nd^{3+}}}$, $I_{_{x\%,Nd^{3+}}}$ 分别代表 Ce³⁺ 单掺及 Ce³⁺ -Nd³⁺ 共掺样品在 531 nm 发光峰处的发光强度, $\tau_{_{0\%,Nd^{3+}}}$, $\tau_{_{x\%,Nd^{3+}}}$ 分别代表 Ce³⁺ 单掺及 Ce³⁺ -Nd³⁺ 共掺样品在 531 nm 发光峰处的荧光寿命. 而 Ce³⁺-Nd³⁺之间的总量子效率 QE 可按照(4)式进行计算:

$$QE = \eta_{Ce}(1 - \eta_{ETE}) + 2\eta_{ETE}, \qquad (4)$$

式中 η_{ETE} 代表 Ce³⁺-Nd³⁺之间的能量传递效率, η_{Ce} 为 Ce 无辐射跃迁下能量传递效率.在理想状态下, η_{Ce} 的数值可近似为100%.Ce³⁺在531 nm 发光峰处的荧光寿命、Ce³⁺Nd³⁺之间的能量传递效率随Nd³⁺掺杂浓度的变化如图 6 所示.随着Nd³⁺在样品中掺杂浓度的增大,Ce³⁺的荧光寿命明显下降,Ce³⁺-Nd³⁺之间的能量传递效率则逐渐提高,由22.9%(S1)迅速增至78.8%(S2).对应的,由(4)式可得出各样品中 Ce³⁺-Nd³⁺之间的能量的量子效率,分别为122.9%,137.7%,165.6%,178.8%.最高量子效率高达178.8%,接近200%的理论值,即Ce³⁺-Nd³⁺发生的是高效量子剪裁.值得注意的是,由于Ce³⁺的无辐射跃迁及Nd³⁺的浓度猝灭等因素,使得实际的量子效率低于178.8%的理论值.

图 5 460 nm 激发波长下, Ce³⁺:5d₁→4f 跃迁(531 nm 发光) 对应的荧光衰减曲线

Fig.5 Decay curves for the ${\rm Ce}^{3+}{:}5d_1{\rightarrow}4f$ transition (531 nm emission) under 460 nm excitation

图 6 Ce³⁺:5d₁→4f 跃迁 (531 nm) 的荧光寿命和 Ce³⁺-Nd³⁺ 问 的能量传递效率随 Nd³⁺ 掺杂浓度的变化图

Fig.6 The mean decay lifetimes of the $\operatorname{Ce}^{3^+}:5d_1 \rightarrow 4f$ transition emission (531 nm) and energy transfer efficiency between Ce^{3^+} and Nd^{3^+} as a function of Nd^{3^+} concentrations

3 结 论

为提高晶硅太阳能的转换效率,合成了 Ce³⁺-Nd³⁺ 共掺 YAG 近红外量子剪裁发光材料.荧光测试证明 Ce³⁺-Nd³⁺之间的能量传递属于合作能量下转换.通过该量子剪裁发光材料,可将光谱范围在 250~450 nm 的一个高能光子裁剪为两个近红外光子,以被晶硅太阳能电池的充分吸收利用.最后,通过荧光寿命计算了 Ce³⁺-Nd³⁺之间的能量传递效率及量子效率,分别高达 78.8%和 178.8%,接近于 200%的理论最高值.本项 工作有望为增强晶硅太阳能电池对太阳光谱的利用率,提高其转换效率提供一条有效的途径.

参考文献

- [1] 刘凌云,李珊,杨东平,等.金属纳米颗粒增强太阳能电池光吸收效应研究[J].河南师范大学学报(自然科学版),2015,43(5):38-42.
- [2] Trupke T, Green M A, Würfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J Appl Phys, 2002, 92 (3):1668-1674.
- [3] Liu X, Teng Y, Zhuang Y, et al. Broadband conversion of visible light to near-infrared emission by Ce³⁺, Yb³⁺-codoped yttrium aluminum garnet[J]. Opt Lett, 2009, 34(22): 3565-3567.
- [4] 李路,娄朝刚,谢宇飞.Ce³⁺-Yb³⁺共掺 YAG 荧光粉量子剪裁发光的浓度及温度特性[J].发光学报,2016,37(12):1445-1450.
- [6] Lin H, Chen D, Yu Y, et al. Broadband UV excitable near-infrared downconversion luminescence in Eu²⁺/Yb³⁺: CaF₂ nanocrystals embedded glass ceramics[J].J Alloy Compd, 2011, 509(7): 3363-3366.
- [7] Zhou J,Zhuang Y,Ye S,et al.Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu²⁺ to Yb³⁺ in glasses[J].Appl Phys Lett,2009,95(14):141101.
- [8] 刘艳花,拜文霞,耿中荣,等.Sr₃Al₂O₆:Tb³⁺,Yb³⁺荧光粉的近红外量子剪裁效应[J].发光学报,2017,38(4):423-429.
- [9] Liu X, Ye S, Qiao Y, et al. Cooperative downconversion and near-infrared luminescence of Tb³⁺-Yb³⁺ codoped lanthanum borogermanate

- [10] Ye S, Zhu B, Chen J, et al. Infrared quantum cutting in Tb³⁺, Yb³⁺ codoped transparent glass ceramics containing CaF₂ nanocrystals[J]. Appl Phys Lett, 2008, 92(14):141112.
- [11] Jaffres A, Viana B, Vander K E.Photon management in La₂BaZnO₅: Tm³⁺, Yb³⁺ and La₂BaZnO₅: Pr³⁺, Yb³⁺ by two step cross-relaxation and energy transfer[J]. Chem Phys Lett, 2012, 527: 42-46.
- [12] Ming C, Song F, An L, et al. Highly efficient quantum cutting in Yb/Pr-codoped NaY(WO₄)₂ crystal[J].Curr Appl Phys, 2014, 14(8): 1028-1030.
- [13] 周佳,戴武斌,黄珂,等.Ca₃Ga₂Ge₃O₁₂:Pr³⁺,Yb³⁺发光性能及其在染料敏化太阳能电池中的应用[J].武汉工程大学学报,2018,40(6): 46-50.
- [14] Chen D, Yu Y, Lin H, et al. Ultraviolet-blue to near-infrared downconversion of Nd³⁺-Yb³⁺ couple[J]. Opt Lett, 2010, 35(2):220-222.
- [15] Tai Y, Li X, Pan B. Efficient near-infrared down conversion in Nd³⁺-Yb³⁺ co-doped transparent nanostructured glass ceramics for photovoltaic application[J]. J Lumin, 2018, 195:102-108.
- [16] Dexter D L.A theory of sensitized luminescence in solids[J].J Chem Phys, 1953, 21(5): 836-850.
- [17] Nie Z G, Zhang J H, Zhang X, et al. Photon cascade luminescence in CaAl₁₂O₁₉: Pr, Cr[J]. J Solid State Chem, 2007, 180(10): 2933-2941.
- [18] Tai Y, Li X, Du X, et al. Broadband near-infrared quantum cutting by Ce-Yb codoped YAG transparent glass ceramics for silicon solar cells[J].RSC Adv, 2018, 8(41): 23268-23273.
- [19] Zhang H, Wang Y, Han L.Photoluminescence properties and energy transfer between Eu³⁺ and Nd³⁺ in polyborate BaGdB₉O₁₆: Eu³⁺, Nd³⁺[J].J Appl Phys, 2011, 109(5): 053109.

Synthesis of Ce^{3+} -Nd³⁺ codoped $Y_3Al_5O_{12}$ phosphors and the near infrared quantum cutting performance investigation

Yuan Guanghui¹, Tai Yuping², Zhang Yongguang³

(1.Department of Chemistry and Chemical Engineering, Research Center of New Advanced Materials, Ankang University, Ankang 725000, China; 2.School of Chemical Engineering & Pharmacy, Henan University of Science and Technology, Luoyang 471023, China;

3.Research Institute for Energy Equipment Materials; Hebei University of Technology, Tianjin 300130, China)

Abstract: $Ce^{3+} - Nd^{3+}$ codoped Y₃ Al₅ O₁₂ (YAG) phosphors were synthesized by a high temperature solid state method. Broadband near infrared quantum cutting was achieved and proved to be a cooperative down-conversion process. Under 460 nm excitation, Ce^{3+} absorbed visible photons to occur electronic transitions to $5d_1$ and then and transferred their energy to two neighboring Nd³⁺. Subsequently, two NIR photons were emitted by Nd³⁺. The down-conversion quantum efficiency were estimated to be as high as 177.8%. This work will open a new route towards increased efficiency in silicon solar cells. According to the quantum cutting between Ce^{3+} -Nd³⁺, the UV-Vis broadband wavelength in the solar spectrum can be converted into NIR waveband, and then absorbed efficiently by the crystalline solar cells.

Keywords: quantum cutting; Ce³⁺-Nd³⁺ codoped; cooperative energy transfer; crystalline solar cell

[责任编校 赵晓华 陈留院]