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1 Introduction
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The function of GLP-1

GLP-1 regulates insulin and
glucagon secretions, gastric emptying,
food intake, and blood flow.

GLP-1-based therapies of T2D

VS
GLP-1 resistance

The mechanisms responsible for GLP-1
unresponsiveness could be related to lipo-
glucotoxicity, autonomic neuropathy,
and gut microbiota dysbiosis.




2 Results

2.1 Animal Models of High-Fat Diet-Induced GLP-1 Resistance
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Animal Models of High-Fat-Diet-Induced GLP-1 Resistance

Mice were fed for 3 months with NCD, HC-HFD, or HFD.



The impact of GLP-1 on insulin secretion

Glucose oral stimulation
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At the 15 min time point after an oral glucose challenge, plasma insulin concentration was
twice as high in HC-HFD-fed obese diabetic mice, while it was lower in HFD-fed lean
diabetic mice when compared with NCD-fed mice (Figure 1D). Importantly, at the same
time point portal vein plasma GLP-1 concentration was three to four times higher in both
diabetic models when compared to NCD-fed mice(Figure 1E), while the glycemia were
almost similar (Figures 1F)




The impact on glucose induced insulin secretion using
increasing doses of GLP-1
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G:the maximal fold change of insulin secretion in NCD and HC-HFD-fed mice was
obtained at the dose of 7 nmol/kg of GLP-1, while doses above 21 nmol/kg were
required for the HFD-fed mice;H:The calculated EC50 was two and four times higher
for the HC-HFD- and the HFD-fed mice, respectively, than for the NCD-fed mice.
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2.2 High-Fat Diet Alters
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A2: quantification of the number
of HuC/HuD-positive cells,
percentage of PGP9.5 and Prph
fluorescent area(as neuronal
marker) and percentage of S100b
fluorescent area (as glial marker);
a B: ileum mRNA concentrations of
neuronal markers (PGP9.5 and
peripherin-prph) and glial
markers (GFAP, S100b)
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A: the number of cFos-positive neurons increases in response to GLP-1 in
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B: GLP-1-induced insulin secretion was reduced by the vagotomy procedure



2.3 Enteric GLP-1 Sensitivity Requires the Production of NO by
Enteric Neurons and Is Impaired in HFD-Fed Mice
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The mRNA concentration analyses suggested that
HFD-induced GLP-1 resistance might be linked to an impaired

GLP-1r expression and the corresponding induction of NO production
through nNOS signaling.
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2.4 Gut Microbiota Dysbiosis Is Responsible for
the GLP-1 Resistance
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the frequency of the bacterial genes involved in the metabolism of nucleotides

and amino acids was increased in the diabetic mice




germ-free(GF) mice and ileum microbiota transplant mice
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A, the absence of microbiota prevented GLP-1-induced insulin secretion; the GLP-1 sensitivity to glucose-
induced insulin secretion was completely reversed in the NCD-conventionalized mice but conv(HFD) mice
B, The GLP-1-resistant state in GF mice can be linked to a decreased of enteric

neuron (PGP9.5, prph) and glial cell (S100b) mRNA in the ileum

C, the concentration of GLP-1r was dramatically reduced in GF mice

D, the concentration of nNOS mRNA reduced



antibiotics (Abx) treated
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E, GLP-1 Induced insulin secretion is blocked by Abx; Conversely, HFD-fed mice was
reversed when the dysbiotic microbiota were eliminated by the antibiotic treatment



2.5 The Microbial-Associated Molecular Pattern Receptors
NOD2, CD14, and TLR4 Control GLP-1 Sensitivity
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GLP-1-induced insulin secretion was dramatically

reduced in NOD2, TLR4, or CD14 KO when compared to WT mice
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for nNOS remained unchanged (D). PGP9.5, prph, GFAP, and S100b in the ileum remained similar

in the KO mice the mRNA of the GLP-1r was increased (C), while the mRNA encoding
to WT mice (B), suggesting that the impaired bacterial signaling is upstream to the ENS.
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To functionally address the role of bacterial determinant on the control of GLP-1
sensitivity, we studied the impact of MDP (NOD?2 agonist) and LPS (CD14/TLR4 agonist)
on NO production by enteric neurons. The data show that GLP-1-induced NO production
was enhanced by high doses of both microbial-associated molecular patterns .




Conclusion
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Thanks for Your attention!



