文章编号:1000-2367(2018)02-0079-05

日本沼虾表皮蛋白基因的克隆及表皮组织差异性表达分析

苗泽龙,吕艳杰,张俊芳,杨洪,宁黔冀

(河南师范大学 生命科学学院,河南 新乡 453007)

摘 要:为探究日本沼虾表皮蛋白(Macrobrachium nipponense cuticle proteins, MnCPs)表达模式与表皮组织 差异的关系,根据日本沼虾表皮组织转录组测序结果,从头胸甲中克隆到1个含几丁质结合-4(chitin_bind_4)结构域 的表皮蛋白(cuticle proteins, CPs)基因,命名为 MnCP-2,经 BLAST 检索, MnCP-2 与远海梭子蟹(Portunus pelagicus, ABM54465.1)有50%的相似性.以健康幼虾(体长 3.0~4.0 cm)的头胸甲、尾扇、游泳足和步足 4 种厚度存在差 异的表皮组织为材料,分别提取 C 期、Do-2 期、D3-4 期和 A 期的 RNA,采用 Real-time PCR 技术,分析了 MnCP-2 在蜕 皮周期不同阶段的相对表达量.结果显示, MnCP-2 在头胸甲、尾扇和游泳足中表达水平的峰值出现在 D3-4 期, 而在 步足中则出现在 D0-2期.提示 MnCP-2 编码的蛋白可能在新外表皮的形成中发挥重要作用,它在表皮组织不同部位 的差异性表达可能是导致表皮结构差异的原因之一.

关键词:日本沼虾;表皮蛋白;头胸甲;尾扇;游泳足;步足;基因克隆;表达

中图分类号:S966.1

文献标志码:A

日本沼虾(Macrobrachium nipponense)等甲壳动物有着坚硬的表皮,表皮中的有机物主要是几丁质和 表皮蛋白(cuticle proteins, CPs)^[1],由于几丁质的生物活性不大,因此对于新表皮的形成 CPs 的研究便成 了重中之重.甲壳动物的许多 CPs 都含有某种基序,其中最普遍的就是 RR 基序,由 Rebers 和 Riddiford^[2]首 次发现,Rebers 和 Willis 描述其特征, RR 基序已经被证实可以结合几丁质^[3].RR 序列有三种变异, RR-1 (Gx₈Gx₆YxAxExGYx₇Px₂P)、RR-2 (Gx₈Gx₆YxAx₄GFNAVV)和极少被鉴别的 RR-3^[4-6].目前已经从 日本对虾(Penaeus japonicus)^[7-9]、蓝蟹(Callinectes sapidus)^[10-11]、克氏原螯虾(Procambarus clarkii)^[12-15]、红螯螯虾(Cherax quadricarinatus)^[16]等甲壳动物中鉴别出多种 CPs,研究证明这些 CPs 主要作 用就是参与蜕皮前后新表皮的形成^[17],因此与甲壳动物的蜕皮活动息息相关.生物信息学的发展进一步加 快了甲壳动物 CPs 的研究,利用转录组学鉴别分析 CPs 已经成为今后发展的方向,例如 Moshe Tom 等人通 过转录组分析,根据蜕皮钙化指数在克氏原螯虾中将蜕皮前期细分为 P1-P7 7 个时期来解释蜕皮相关基因 (包括编码 CPs 的基因)的表达模式,从而得出这些基因对蜕皮调节及外骨骼重建的重要性^[18].

由于 CPs 在不同物种间的相似性较低,没有可比性,而有关日本沼虾表皮蛋白(*M. nipponense* cuticle proteins, MnCPs)的研究尚未见报道.因此,本实验结合转录组测序技术,克隆出了 *MnCP-2* 的部分 cDNA 片段,采用 Real-time PCR 分析了不同蜕皮时期 *MnCP-2* 在头胸甲、尾扇、游泳足和步足 4 种厚度存在差异 的表皮组织的表达,为进一步阐述 CPs 的功能,尤其在日本沼虾等甲壳动物蜕皮周期中的功能提供参考.

1 材料与方法

1.1 实验动物

日本沼虾于 2016 年 5~10 月捕捞于河南卫辉顺城关公园,选取健康幼虾[体长(3.0~4.0) cm]50 尾饲

收稿日期:2017-03-28;修回日期:2017-12-20.

- 基金项目:国家自然科学基金(30940008);河南省教育厅科学技术研究重点项目(14A240003);河南师范大学青年科学基金(5101049279089).
- **作者简介:**苗泽龙(1993-),男,河南洛阳人,河南师范大学硕士研究生,主要研究方向为动物生长发育调控,E-mail: 15560101651@163.com.
- 通信作者:吕艳杰,河南师范大学副教授,博士,E-mail:snowlyj@126.com.

养于水族箱中,水温(22±1)℃,一周后用于实验.

1.2 RNA 的提取

依据 Cesar 等^[19]的方法分别选取 C 期、D₀₋₂期、D₃₋₄期和 A 期各 4-5 只幼虾,分离出头胸甲、尾扇、游泳足 和步足等表皮组织,利用 Mini BEST Universal RNA Extraction Kit(TAKARA)试剂盒,按照说明书的操作 步骤提取上述不同表皮组织的 RNA.

1.3 RNA 反转录为 cDNA

利用反转录试剂盒 5X All-In-One RT Master Mix(abm),按照说明书的反转录条件将提取出的 RNA 反转录为 cDNA 模板.

1.4 克隆目的片段

根据引物设计原则,经 BLAST 比对,找出较为保守的几丁质结合域,利用软件 Prime primer 5 设计上、下游引物(表 1),按照说明书的 PCR 反应条件扩增获得目的片段.

1.5 生物信息学分析

通过 NCBI 网站对 *MnCP-2* 进行 BLAST 比对,寻找相似的同源基因.利用 Conserved Domain(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)确定基因的几丁质结合保守域,利用 Open Reading Frame (ORF)Finder(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)分析预测开放阅读框,使用 DNA-MAN 软件进行多序列比对分析.

1.6 MnCP-2 的表达分析

根据引物设计原则,利用软件 Prime primer 5 设计上、下游引物(表 1).按照 AceQTM qPCR SYBR® Green Master Mix(Vazyme)试剂盒说明书步骤操作,β-actin 为内参基因,实验均设 3 个重复,采用比较 C_t 值($-\Delta\Delta C_t$ 法)计算相对表达量,使用 SPSS13.0 进行多重比较,P < 0.05 表示差异显著.

引物名称	序列(5-3)	用途
MnCP-2-F1	ACTTTTCTTCATGGTCCTTGTC	PCR
MnCP-2-R1	TTGGGCTCCCCTTCGTA	
MnCP-2-F2	AATACAGCTACAAATACGGAGTGGC	Real-time PCR
MnCP-2-R2	CCCCGTTGACGGTGTAAGTC	
β-actin-F	TATGCACTTCCTCATGCCATC	Real-time PCR
β-actin-R	AGGAGGCGGCAGTGGTCAT	

表 1 日本沼虾 MnCP-2 克隆及实时荧光定量所用的引物

2 实验结果

2.1 日本沼虾表皮组织总 RNA 的提取及 MnCP-2 的部分序列克隆

提取的 RNA 在紫外照射下有 28S 和 18S 两条带,亮度接近 2:1(图 1).将提取出的 RNA 反转录为 cD-NA,以 cDNA 为模板,进行 PCR 反应扩增,获得含有几丁质结合-4 结构域的 MnCP-2 的特异性目的片段, PCR 产物长度是 276 bp(图 2).

2.2 MnCP-2 的生物信息学分析

MnCP-2 经测序为 463 bp,开放阅读框为 28~351 bp,长度为 324 bp,几丁质结合-4 结构域位于 124~ 282 bp(图 3),与远海梭子蟹的表皮蛋白 PpCB6(P. pelagicus, ABM54465.1)有 50%的相似性(图 4),Gen-Bank 登录号为 KY126405.

2.3 MnCP-2 的表达分析

MnCP-2 在 4 种表皮组织的表达模式不尽相同.在头胸甲、尾扇和游泳足,mRNA 表达水平的峰值出现 在 D₃₋₄期,而在步足中则是 D₀₋₂期.在相同的蜕皮周期,4 种表皮组织间该基因的表达量也存在明显差异,C 期 和 D₀₋₂期,头胸甲和步足的表达量显著高于尾扇和游泳足,而在 D₃₋₄和 A 期则恰好相反(*P*<0.05)(图 5).

泳道1~4分别是:1.头胸甲:2.尾扇:3.游泳足:4.步足.

2 000 bp 1 000 bp 750 bp 500 bp 250 bp	2 000 bp → 1 000 bp → 750 bp → 500 bp → 250 bp → 100 bp →				1	2
2 000 bp → 1 000 bp → 750 bp → 500 bp → 250 bp →	2 000 bp				-	
2 000 bp	2 000 bp					
2 000 bp 1 000 bp 750 bp 250 bp 250 bp	2 000 bp → 1 1 000 bp → 1 750 bp → 1 250 bp → 100 bp					
1 000 bp → 750 bp → 500 bp → 250 bp →	1 000 bp 750 bp 500 bp 250 bp 100 bp	2	000	bp 	-	•
750 bp 500 bp 250 bp 	750 bp → 500 bp → 250 bp → 100 bp →	1	000	bp <u> </u>	-	
250 bp	500 bp → 250 bp → 100 bp →		750	bp —	Concession in which the	
250 bp	250 bp ———————————————————————————————————		500	bp		
	100 bp		250	bp 	-	-
100 bp	1948.00 0.005		100	bp		
1 - C						

泳道1.DL2000 marker;泳道2.MnCP-2的扩增序列.

图2 MnCP-2基因部分序列PCR凝胶电泳图

1	GCCTCAGCGTCTGCACAAATCAACATCATGGCTTTGAAACTTTTCTTCATGGTCCTTGTC
1	M A L K L F F M V L V
61	ATCAGOGGAG TCTTCTGOGAAAAATACAAACCTGATGTTGAGGAACCOCAGGGTCCAGCA
12	I S G V F C E K Y K P D V E E P Q G P A
121	AAATACAGCTACAAATAOGGAG TGGCOGAOGCTGAGAGOGGGAATAG TTATGGOCAOGAC
32	K Y S Y K Y G V A D A E S G N S Y G H D
181	GAAACCAGAGAGAGGAGAGGCCATCCAGGGCTCTTACATCATCCGCCTTCCAGATTCCAGA
52	ETRDGDAIQGSYIIRLPDSR
241	ACOCAGAAGG TGACTTACACOG TCAAOGGGGGGCTCGGG TTA TG TGGCOG A TG TCACCTAC
72	TQKVTYTVNGGSGYVADVTY
301	GAAGGGGAGCCCAAGTACCCTGACGTGCCTCCCAAGAAGGGATACAATTAAACTTACTGT
92	EGEPKYPDVPPKKGYN*
361	CCTCCACTATGGTTAGTCTAAAGTAGACTCAGATCTTCAGCGCCTAAOCTCTTCATTGAT
421	TCTCGATTTTTACCTTTCTCTCTCTCTCTGAAAGAATCTGATC

灰色表示chitin_bind_4结构域,细线方框加粗字母表示RR基序保守位点,*表示终止密码子.

图3 日本沼是MnCP-2部分cDNA序列和推导的氨基酸序列

日本沼虾(M. nipponense, KY126405) 远海梭子蟹(P. pelagicus, ABM54465.1) 疮痂鱼虱(Lepeophtheirus salmonis, AC012414.1) 端足虫(Hyalella azteca, XP_018022126.1) 端足虫(H. azteca, XP_018022127.1) Consensus	KEDVEEPÇGFAKYSYKYQVADAESGNSYGHDDI GSDƏDSYESYESYESSEAXVEFEWSVEDASIGNDEDHXDA YHAFSFSYKFIRYDESFÇFMAFKYQVSDDYSGAÇFIADDN YAAANSQRADDQFEEAKYDFAWQVXDDESGNMFNQVDI YAAANSQRVDDQFEEAKYDFAWQVXDDESGNMFNQVDI y vd q e	53 120 68 64 64
日本沼虾(M. nipponense, KY126405) 远海梭子蟹(P. pelagicus, ABM54465.1) 疮痂鱼虱(Lepeophtheirus salmonis, AC012414.1) 端足虫(Hyalella azteca, XP_018022126.1) 端足虫(H. azteca, XP_018022127.1) Consensus	RIGDAIGESYIISTERSKICKVYYYVNEGSGYVADVIYEG RIGDSIGENSVOLSDERSCIVNYVEGSGYVADVQYEG ADGXIISESYCVADEDERSCIVNYVVEGSGEVADVQYEG RDADVIRGANYVADEDERCCVVYYVDGDSGEVADVTYEG RDADVIRGANYVADEDERCCVVYYVDGDSGEVADVTYEG d gylddrguyvyggvavyeg	93 160 108 104 104
日本沼虾(M. nipponense, KY126405) 远海梭子蟹(P. pelagicus, ABM54465.1) 疮痂鱼虱(Lepeophtheirus salmonis, AC012414.1) 端足虫(HyaleIla azteca, XP_018022126.1) 端足虫(H. azteca, XP_018022127.1) Consensus	EPKYEDVFPKKGYN. EARYEDSFSRESESSRESSRSHESFESFHSGSDSDESFE IPSYEKYEPKHAHKFASYHAPAPAYKFAPSYKA EACFECFGEHCCCSYAFCYS EACFECFGEHCCCSYAPCYS	107 200 141 124 124

黑色代表相同水平为100%,灰色代表相同水平 50%.

3 讨 论

首次从日本沼虾的表皮组织中克 降出了 MnCP-2 的部分 cDNA 片段, 含有几丁质结合-4结构域(图3),经多 序列比对, MnCP-2 与甲壳动物或昆 虫的多种 CPs 均有一定的相似性(图 4).研究表明,甲壳动物自蜕皮前期开 始,新表皮就逐渐形成、增厚[20-21],这 应该与表皮蛋白的高表达密切相关,在 蓝蟹的背部表皮发现的三种表皮蛋白 (CsCP8.5, CsCP8.2, CsCP14.1) 和在 关节膜中发现的一种蛋白(CsAMP9. 3) 都是在 D₃₋₄ 期表达最高^[10-11],本实 验室最新发现的日本沼虾 MnCBP-1 的表达峰值也出现在 D₃₋₄ 期^[22], 它们 都被认为参与了蜕皮前外表皮的形成. 本文结果 MnCP-2 的表达峰值出现在 D期(D₀₋₂或D₃₋₄期),推测其主要参与

新外表皮的形成;4种表皮组织,峰值出现的时间并不一致(图5),说明同一个基因在表皮不同部位的表达存 在时序性差异^[23],也有可能是由于该基因在不同表皮组织的剪接方式不同(可变剪接,alternatives plicing), 从而翻译产生不同的蛋白质^[24].

CPs 在甲壳动物表皮不同部位的分布特征目前未见报道.*MnCP*-2 mRNA 含量在 4 种表皮组织间存在 明显的差异(图 5),说明 *MnCP*-2(可能还包括其他表皮蛋白)在整个表皮并不是均匀分布,这可能导致了表 皮结构(如厚度)的差异,当然,在今后的研究中蛋白水平的验证是必要的.

综上,*MnCP*-2在不同表皮组织的表达既有共同的特征(都随蜕皮周期变化),又有明显的差异,这可能 是导致表皮不同部位结构差异的原因之一.

参考文献

- [1] Chang E S, Mykles D L.Regulation of crustacean molting: a review and our perspectives [J].General & Comparative Endocrinology, 2011, 172(3):323-330.
- [2] Rebers J E, Riddiford L M.Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes[J]. Journal of Molecular Biology, 1988, 203(2): 411-423.
- [3] Rebers J E, Willis J H.A conserved domain in arthropod cuticular proteins binds chitin[J]. Insect Biochemistry & Molecular Biology, 2001,31(11):1083-1093.
- [4] Andersen S O.Characterization of proteins from arthrodial membranes of the lobster, *Homarus americanus*[J].Comparative Biochemistry
 & Physiology Part A Molecular & Integrative Physiology, 1998, 121(4): 375-383.
- [5] Andersen S O.Amino acid sequence studies on endocuticular proteins from the desert locust, *Schistocerca gregaria*[J].Insect Biochemistry & Molecular Biology, 1998, 28(5/6), 421-434.
- [6] Andersen S O.Studies on proteins in post-ecdysial nymphal cuticle of locust, *Locusta migratoria*, and cockroach, *Blaberus craniifer*[J].In-sect Biochemistry & Molecular Biology, 2000, 30(7):569-577.
- [7] Watanabe T, Persson P, Endo H, et al. Molecular analysis of two genes, DD9A, and B, which are expressed during the postmolt stage in the decapod crustacean *Penaeus japonicus*[J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2000, 125 (1):127-136.
- [8] Endo H, Persson P, Watanabe T. Molecular cloning of the crustacean DD4 cDNA encoding a Ca²⁺-binding protein[J].Biochemical & Biophysical Research Communications, 2000, 276(1):286-291.

- [9] Ikeya T.Persson P.Kono M.et al. The DD5.gene of the decapod crustacean *Penaeus japonicus*.encodes a putative exoskeletal protein with a novel tandem repeat structure[J].Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology.2001.128 (3):379-388.
- [10] Wynn A, Shafer T H. Four differentially expressed cDNAs in *Callinectes sapidus* containing the Rebers-Riddiford consensus sequence[J].
 Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2005, 141(3): 294-306.
- [11] Faircloth L M, Shafer T H.Differential expression of eight transcripts and their roles in the cuticle of the blue crab, *Callinectes sapidus* [J].Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2007, 146(3): 370-383.
- [12] Inoue H, Ohira T, Ozaki N, et al. Cloning and expression of a cDNA encoding a matrix peptide associated with calcification in the exoskeleton of the crayfish[J].Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2003, 136(4):755-765.
- [13] Inoue H, Ohira T, Ozaki N, et al. A novel calcium-binding peptide from the cuticle of the crayfish, Procambarus clarkii [J]. Biochemical & Biophysical Research Communications, 2004,318(3):649-654.
- [14] Inoue H, Yuasahashimoto N, Suzuki M, et al. Structural determination and functional analysis of a soluble matrix protein associated with calcification of the exoskeleton of the crayfish, *Procambarus clarkii* [J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(10): 2697-2707.
- [15] Suzuki M, Sugisakanobayashi A, Kogure T, et al. Structural and functional analyses of a strong chitin-binding protein-1 (SCBP-1) from the exoskeleton of the crayfish *Procambarus clarkii* [J]. Bioscience Biotechnology & Biochemistry, 2013, 77(2):361-368.
- [16] Tynyakov J, Bentov S, Abehsera S, et al. A Novel Chitin Binding Crayfish Molar Tooth Protein with Elasticity Properties [J]. Plos One, 2015,10(5);e0127871.
- [17] Roer R, Abehsera S, Sagi A. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics. Integrative and Comparative Biology[J].Integrative and Comparative Biology, 2015, 55(5):771-791.
- [18] Tom M, Manfrin C, Chung S J, et al. Expression of cytoskeletal and molt-related genes is temporally scheduled in the hypodermis of the crayfish *Procambarus clarkii* during premolt[J]. Journal of Experimental Biology, 2014, 217(23): 419₃₋₄202.
- [19] Cesar J R D O, Zhao B, Malecha S, et al. Morphological and biochemical changes in the muscle of the marine shrimp *Litopenaeus van*namei during the molt cycle[J]. Aquaculture, 2006, 261(2):688 - 694.
- [20] Kuballa A V, Merritt D J, Elizur A.Gene expression profiling of cuticular proteins across the moult cycle of the crab *Portunus pelagicus* [J].BMC Biology, 2007, 5(1):1-26.
- [21] 吕艳杰,陈香丽,宁黔冀.KK-42对日本沼虾蜕皮前期外骨骼结构及 NAGase 活力的影响[J].河南师范大学学报(自然科学版),2015,43 (4):130-133.
- [22] 张宇,王佩,吕艳杰,等.日本沼虾表皮几丁质结合蛋白基因的克隆以及 KK-42 对其表达的影响[J].河南师范大学学报(自然科学版), 2016,44(5):106-111.
- [23] 朱玉贤,李毅,郑晓峰,等.现代分子生物学[M].北京:高等教育出版社.2013,15.
- [24] 王林嵩,梁卫红,王歌.普通分子生物学[M].北京:科学出版社.2012:203.

Cloning and differential expression analysis of cuticle protein genes in different cuticular tissues from *Macrobrachium Nipponense*

Miao Zelong, Lü Yanjie, Zhang Junfang, Yang Hong, Ning Qianji

(College of Life Science, Henan Normal University, Xinxiang 453007, China)

Abstract: In order to understand the relationship between expression patterns of *Macrobrachium nipponense* cuticle proteins (MnCPs) and differences in cuticular tissues, a gene containing chitin_bind_4 conserved domain called *MnCP-2* was first cloned in carapace from M. nipponense, according to the result derived from transcriptome sequecing. BLAST search shows that *MnCP-2* has 50% similarity with CPs from *Portunus pelagicus*. RNA was extracted from the stage C, $D_{0.2}$, $D_{3.4}$ and A of healthy juvenile M. nipponense (body length $3.0 \sim 4.0$ cm) in the carapace, tail fan, pleopod and pereiopod which have different thicknesses. Real-time PCR technique was used to analyze the expression levels of *MnCP-2*. The result showed *MnCP-2* mR-NA expression level was highest during stage $D_{3.4}$ in carapace, tail fan and pleopod, while during stage $D_{0.2}$ in pereiopod (P < 0.05). Consequently, it suggests that *MnCP-2* likely have an important role in forming new exocuticle, and their differential expressions in different cuticular tissues is possible one of the reasons why cuticle has different structures.

Keywords: Macrobrachium nipponense; cuticle proteins; carapace; tail fan; pleopod; pereiopod; gene clone; expression

[责任编校 王凤产]