人才荟萃

裴永刚

发布时间:2016-01-13浏览次数:10057

裴永刚,男,19804月生,博士,副教授,硕士生导师。

E-mail:peiyonggang@htu.edu.cnpeiyg@163.com

通信地址:数学与信息科学学院

邮  编:453007

个人简历

1998.9-2002.6,betway官方app,数学与信息科学学院,计算数学专业,获理学学士学位

2002.7至今,betway官方app ,从事教学科研工作

其间

2005.9-2008.6,betway官方app ,数学与信息科学学院,计算数学专业,获理学硕士学位

2011.9-2014.6,上海师范大学,数理学院,计算数学专业,获理学博士学位

研究领域

研究领域:运筹学

研究方向:最优化理论、算法及其应用

教学工作

主讲本科生课程:《运筹与优化》、《运筹学》、《线性代数》《高等数学》

主讲研究生课程:《凸优化方法》、《凸分析》、《数学规划》

获奖、荣誉

202106月,获河南省高等学校优秀共产党员

2016年被评为betway官方app 优秀教师、文明教师

2015年获河南省自然科学优秀学术论文一等奖和三等奖各1

2015年指导本科生参加全国大学生数学建模竞赛获国家二等奖1

2011年被评为betway官方app 优秀共产党员

科研项目

1.基于大数据优化问题的免矩阵信赖域过滤算法研究(河南省科技攻关项目),主持, 2016-2018,结题

2.广义分式规划问题的全局优化方法研究(国家自然科学基金),2017-2020,参加

3.关于随机二阶锥互补约束数学规划问题的研究(国家自然科学基金),2019-2021,参加.

4.广义非线性分式和问题的全局优化方法研究(国家自然科学基金),2021-2024,参加

论文

[1]Pei, Yonggang; Song, Shaofang; Zhu, Detong. A filter sequential adaptive cubic regularization algorithm for nonlinear constrained optimization. Numer. Algorithms 93 (2023), no. 4, 1481–1507.

[2]Pei, Yonggang; Song, Shaofang; Zhu, Detong. A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization. Comput. Optim. Appl. 84 (2023), no. 3, 1005–1033.

[3]Song, Yanlai; Pei, Yonggang. A new viscosity semi-implicit midpoint rule for strict pseudo-contractions and (α,β)-generalized hybrid mappings. Optimization 70 (2021), no. 12, 2635–2653.

[4]Pei, Yonggang; Chen, Xinhong Algorithms for common null point problems with an infinite family of demimetric mappings in Banach spaces. Math. Appl. (Wuhan) 32 (2019), no. 1, 94–105.

[5]Pei, Yong Gang; Zhu, De Tong On the global convergence of a projective trust region algorithm for nonlinear equality constrained optimization. Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 12, 1804–1828.

[6]Gu, Chao; Zhu, Detong; Pei, Yonggang A new inexact SQP algorithm for nonlinear systems of mixed equalities and inequalities. Numer. Algorithms 78 (2018), no. 4, 1233–1253.

[7]Song, Yanlai; Pei, Yonggang A new modified semi-implicit midpoint rule for nonexpansive mappings and 2-generalized hybrid mappings. J. Nonlinear Sci. Appl. 9 (2016), no. 12, 6348–6363.

[8]Yang, Ximei; Zhang, Yinkui; Liu, Hongwei; Pei, Yonggang A Mizuno-Todd-Ye predictor-corrector infeasible-interior-point method for linear programming over symmetric cones. Numer. Algorithms 72 (2016), no. 4, 915–936.

[9]Pei, Yonggang; Zhu, Detong Local convergence of a trust-region algorithm with line search filter technique for nonlinear constrained optimization. Appl. Math. Comput. 273 (2016), 797–808.

[10]Pei, Yonggang; Zhu, Detong An affine scaling interior trust-region algorithm combining backtracking line search with filter technique for nonlinear constrained optimization. Numer. Funct. Anal. Optim. 36 (2015), no. 8, 1046–1066.

[11]Pei, Yonggang; Zhu, Detong A trust-region algorithm combining line search filter method with Lagrange merit function for nonlinear constrained optimization. Appl. Math. Comput. 247 (2014), 281–300.

[12]Pei, Yonggang; Zhu, Detong A trust-region algorithm combining line search filter technique for nonlinear constrained optimization. Int. J. Comput. Math. 91 (2014), no. 8, 1817–1839.

[13]Pei, Yonggang Modified Ishikawa iteration of Cesàro means for asymptotically non-expansive mappings. Math. Appl. (Wuhan) 27 (2014), no. 3, 519–528.

[14]Pei, Yong Gang; Jin, Li; Shen, Pei Ping A duality bound method for solving concave multiplicative programming with exponents. (Chinese) Acta Math. Appl. Sin. 36 (2013), no. 1, 115–125.

[15]Pei, Yonggang; Zhu, Detong Global optimization method for maximizing the sum of difference of convex functions ratios over nonconvex region. J. Appl. Math. Comput. 41 (2013), no. 1-2, 153–169.

[16]Pei, Yonggang; Gu, Minna; Shen, Peiping Global optimization for the sum of convex ratios problem over nonconvex feasible region. Math. Appl. (Wuhan) 23 (2010), no. 3, 582–588.

[17]Shen, Pei-Ping; Duan, Yun-Peng; Pei, Yong-Gang A simplicial branch and duality bound algorithm for the sum of convex-convex ratios problem. J. Comput. Appl. Math. 223 (2009), no. 1, 145–158.


Baidu
map