人才荟萃
|
||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
发布时间: 2014-03-14 浏览次数:15786次 |
||||||||||||||||||||||||||||||||||||||||||||
[1] Yan, Wei; Zhang, Qiaoqiao; Zhang, Haixia; Zhao, Lu The Cauchy problem for the rotation-modified Kadomtsev-Petviashvili type equation. J. Math. Anal. Appl. 489 (2020), no. 2,124198, 37 pp. [2] Yan, Wei; Li, Yongsheng; Huang, Jianhua; Duan, Jinqiao The Cauchy problem for a two-dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces.Anal. Appl. (Singap.) 18 (2020), no. 3, 469-522. [3] Yan, Wei; Yang, Meihua; Duan, Jinqiao White noise driven Ostrovsky equation. J. Differential Equations 267 (2019), no. 10, 5701-5735. [4] Yan, Wei; Li, Yongsheng; Zhai, Xiaoping; Zhang, Yimin The Cauchy problem for higher-order modified Camassa-Holm equations on the circle. Nonlinear Anal. 187 (2019), 397–433. [5] Yan, Wei; Zhang, Qiaoqiao; Zhao, Lu; Zhang, Haixia The local well-posedness and the weak rotation limit for the cubic Ostrovsky equation. Appl. Math. Lett. 96 (2019), 147-152. [6] Fan, Lili; Yan, Wei The Cauchy problem for shallow water waves of large amplitude in Besov space. J. Differential Equations 267 (2019), no. 3, 1705-1730. [7]Fan, Lili; Yan, Wei On the weak solutions and persistence properties for the variable depth KDV general equations. Nonlinear Anal. Real World Appl. 44 (2018), 223-245. [8] Yan, Wei; Li, Yongsheng; Huang, Jianhua; Duan, Jinqiao The Cauchy problem for the Ostrovsky equation with positive dispersion. NoDEA Nonlinear Differential Equations Appl. 25(2018), no. 3, Paper No. 22, 37 pp. [9] Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations. Anal. Appl. (Singap.) 16(2018), no. 3, 363-405. [10] Wang, JunFang; Yan, Wei The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion. Nonlinear Anal. Real World Appl. 43 (2018), 283–307. [11] Ren, Yuanyuan; Li, Yongsheng; Yan, Wei Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Commun. Pure Appl. Anal. 17(2018), no. 2, 487-504. [12] Jiang, Minjie; Yan, Wei; Zhang, Yimin Sharp well-posedness of the Cauchy problem for the higher-order dispersive equation. Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 4,1061-1082. [13] Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global solution to the 3-D density-dependent incompressible flow of liquid crystals. Nonlinear Anal. 156 (2017), 249-274. [14] Yan, Wei; Li, Yongsheng; Zhai, Xiaoping; Zhang, Yimin The Cauchy problem for the shallow water type equations in low regularity spaces on the circle. Adv. Differential Equations 22 (2017), no. 5-6, 363-402. [15]Ma, Haitao; Zhai, Xiaoping; Yan, Wei; Li, Yongsheng Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces. Z. Angew. Math. Phys. 68 (2017), no. 1, Paper No. 14, 37 pp. [16]Li, Shiming; Li, Yongsheng; Yan, Wei A global existence and blow-up threshold for Davey-Stewartson equations in R3. Discrete Contin. Dyn. Syst. Ser. S 9 (2016), no. 6,1899-1912. [17]Lin, Lin; Lv, Guangying; Yan, Wei Well-posedness and limit behaviors for a stochastic higher order modified Camassa-Holm equation. Stoch. Dyn. 16 (2016), no. 6, 1650019, 19 pp. [18] Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Well-posedness for the three dimension magnetohydrodynamic system in the anisotropic Besov spaces. Acta Appl. Math. 143(2016), 1-13. [19]Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global solutions to the Navier-Stokes-Landau-Lifshitz system. Math. Nachr. 289 (2016), no. 2-3, 377-388. [20]Li, Shiming; Yan, Wei; Li, Yongsheng; Huang, Jianhua The Cauchy problem for a higher order shallow water type equation on the circle. J. Differential Equations 259 (2015), no. 9, 4863-4896. [21]Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces. J. Math. Anal. Appl. 432(2015), no. 1, 179-195. [22]Zhai, Xiaoping; Li, Yongsheng; Yan, Wei Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Commun. Pure Appl. Anal. 14 (2015), no. 5, 1865–1884. [23]Chen, Defu; Li, Yongsheng; Yan, Wei On well-posedness of two-component Camassa-Holm system in the critical Besov space. Nonlinear Anal. 120 (2015), 285-298. [24] Li, Yongsheng; Huang, Jianhua; Yan, Wei The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity. J. Differential Equations 259(2015), no. 4, 1379-1408. [25]Zhao, Yongye; Li, Yongsheng; Yan, Wei The global weak solutions to the Cauchy problem of the generalized Novikov equation. Appl. Anal. 94 (2015), no. 7, 1334-1354. [26] Yan, Wei; Li, Yongsheng The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space. Ann. Inst. H. Poincaré Anal. Non Linéaire32 (2015), no. 2, 443-469. [27] Chen, Defu; Li, Yongsheng; Yan, Wei On the Cauchy problem for a generalized Camassa-Holm equation. Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 871-889. [28] Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation. Appl. Anal. 93 (2014), no. 7, 1358–1381. [29] Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation in Besov space. J. Differential Equations 256 (2014), no. 8,2876-2901. [30]Zhao, Yongye; Li, Yongsheng; Yan, Wei Local well-posedness and persistence property for the generalized Novikov equation. Discrete Contin. Dyn. Syst. 34 (2014),no. 2, 803-820. [31]Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the Novikov equation. NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 1157-1169. [32]Yan, Wei; Li, Yongsheng; Li, Shiming Sharp well-posedness and ill-posedness of a higher-order modified Camassa-Holm equation. Differential Integral Equations 25(2012), no. 11-12, 1053–1074. [33]Yan, Wei; Li, Yongsheng Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation. Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 2, 710–716. [34] Yan, Wei; Li, Yongsheng; Zhang, Yimin The Cauchy problem for the integrable Novikov equation. J. Differential Equations 253 (2012), no. 1, 298-318. [35]Yan, Wei; Li, Yongsheng; Zhang, Yimin Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75 (2012), no. 4, 2464-2473. [36]Yan, Wei; Li, Yongsheng; Yang, Xingyu The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity. Math. Comput. Modelling 54 (2011), no. 5-6, 1252-1261. [37] Yan, Wei; Li, Yongsheng Ill-posedness of Kawahara equation and Kaup-Kupershmidt equation. J. Math. Anal. Appl. 380 (2011), no. 2, 486-492. [38]Yan, Wei; Li, Yongsheng The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math. Methods Appl. Sci. 33 (2010), no. 14, 1647-1660. [39]Li, Yongsheng; Yan, Wei; Yang, Xingyu Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity. J. Evol. Equ. 10 (2010), no. 2, 465-486. |
||||||||||||||||||||||||||||||||||||||||||||