人才荟萃

闫 威 博士

发布时间: 2014-03-14     浏览次数:15786


 


  

闫威  教授  博士生导师
 
电子邮件: 011133@htu.edu.cn
 
通信地址: 数学与信息科学学院
 邮  编: 453007




个人简历

教育经历:

2002—2006 毕业于南阳师范学院,获得理学学士学位;

2006—2011 硕博连读于华南理工大学,获得理学博士学位。

工作经历:

2011.7— 2013.9,  betway官方app 数学与信息科学学院,讲师;

2013.10—2020.3,  betway官方app 数学与信息科学学院,副教授(其间:2016.09—2017.09, 国家公派访问学者,访问美国伊利诺伊理工大学应用数学系)

2020.4-  至今 ,   betway官方app 数学与信息科学学院,教授



研究领域

偏微分方程,调和分析,随机偏微分方程,初值随机化


教学工作

主讲本科生课程:《线性代数 》、《高等数学》、《专业英语》、《数学物理方法》、《数学物理方程》、《常微分方程》

主讲研究生课程:《偏微分方程》、《调和分析》


奖励与荣誉




2014,   荣获2012-2014年度betway官方app 优秀教师称号

2014,   荣获betway官方app 2014年度校骨干教师称号

2016,   荣获betway官方app 优秀实习指导教师称号

2019,   荣获betway官方app 2017-2018年度文明教师称号

2020,   荣获betway官方app 优秀共产党员



科研项目


 1.国家自然科学基金, Camassa-Holm型方程解的整体存在性和爆破性研究,2013.01-2013.12,主持

2.国家自然科学基金, 水波中某些非线性色散方程的适定性研究,2015.01-2017.12, 主持

3.国家自然科学基金, KP型方程和Ostrovsky型方程低正则性解的研究,2018.01-2021.12,主持

4.国家留学基金委项目,   色散波方程的初值随机化, 2016.09-2017.09,主持.

5.河南省骨干教师项目,   高阶薛定谔方程的柯西问题的研究,2018.1-2020.12,主持



论文著作

[1] Yan, WeiZhang, QiaoqiaoZhang, HaixiaZhao, Lu The Cauchy problem for the rotation-modified Kadomtsev-Petviashvili type equation. J. Math. Anal. Appl. 489 (2020), no. 2,124198, 37 pp.

[2] Yan, WeiLi, YongshengHuang, JianhuaDuan, Jinqiao The Cauchy problem for a two-dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces.Anal. Appl. (Singap.) 18 (2020), no. 3, 469-522.

[3] Yan, WeiYang, MeihuaDuan, Jinqiao White noise driven Ostrovsky equation. J. Differential Equations 267 (2019), no. 10, 5701-5735.

[4] Yan, WeiLi, YongshengZhai, XiaopingZhang, Yimin The Cauchy problem for higher-order modified Camassa-Holm equations on the circle. Nonlinear Anal. 187 (2019), 397–433. 

[5] Yan, WeiZhang, QiaoqiaoZhao, LuZhang, Haixia The local well-posedness and the weak rotation limit for the cubic Ostrovsky equation. Appl. Math. Lett. 96 (2019), 147-152.

[6] Fan, LiliYan, Wei The Cauchy problem for shallow water waves of large amplitude in Besov space. J. Differential Equations 267 (2019), no. 3, 1705-1730. 

[7]Fan, LiliYan, Wei On the weak solutions and persistence properties for the variable depth KDV general equations. Nonlinear Anal. Real World Appl. 44 (2018), 223-245. 

[8] Yan, WeiLi, YongshengHuang, JianhuaDuan, Jinqiao The Cauchy problem for the Ostrovsky equation with positive dispersion. NoDEA Nonlinear Differential Equations Appl. 25(2018), no. 3, Paper No. 22, 37 pp. 

[9] Zhai, XiaopingLi, YongshengYan, Wei Global well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations. Anal. Appl. (Singap.) 16(2018), no. 3, 363-405. 

[10] Wang, JunFangYan, Wei The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion. Nonlinear Anal. Real World Appl. 43 (2018), 283–307. 

[11] Ren, YuanyuanLi, YongshengYan, Wei Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Commun. Pure Appl. Anal. 17(2018), no. 2, 487-504. 

[12] Jiang, MinjieYan, WeiZhang, Yimin Sharp well-posedness of the Cauchy problem for the higher-order dispersive equation. Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 4,1061-1082. 

[13] Zhai, XiaopingLi, YongshengYan, Wei Global solution to the 3-D density-dependent incompressible flow of liquid crystals. Nonlinear Anal. 156 (2017), 249-274.

[14] Yan, WeiLi, YongshengZhai, XiaopingZhang, Yimin The Cauchy problem for the shallow water type equations in low regularity spaces on the circle. Adv. Differential Equations 22 (2017), no. 5-6, 363-402.

[15]Ma, HaitaoZhai, XiaopingYan, WeiLi, Yongsheng Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces. Z. Angew. Math. Phys. 68 (2017), no. 1, Paper No. 14, 37 pp.

[16]Li, ShimingLi, YongshengYan, Wei A global existence and blow-up threshold for Davey-Stewartson equations in R3. Discrete Contin. Dyn. Syst. Ser. S 9 (2016), no. 6,1899-1912.

[17]Lin, LinLv, GuangyingYan, Wei Well-posedness and limit behaviors for a stochastic higher order modified Camassa-Holm equation. Stoch. Dyn. 16 (2016), no. 6, 1650019, 19 pp.

[18] Zhai, XiaopingLi, YongshengYan, Wei Well-posedness for the three dimension magnetohydrodynamic system in the anisotropic Besov spaces. Acta Appl. Math. 143(2016), 1-13.

[19]Zhai, XiaopingLi, YongshengYan, Wei Global solutions to the Navier-Stokes-Landau-Lifshitz system. Math. Nachr. 289 (2016), no. 2-3, 377-388.

[20]Li, ShimingYan, WeiLi, YongshengHuang, Jianhua The Cauchy problem for a higher order shallow water type equation on the circle. J. Differential Equations 259 (2015), no. 9, 4863-4896.

[21]Zhai, XiaopingLi, YongshengYan, Wei Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces. J. Math. Anal. Appl. 432(2015), no. 1, 179-195.

[22]Zhai, XiaopingLi, YongshengYan, Wei Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Commun. Pure Appl. Anal. 14 (2015), no. 5, 1865–1884. 

[23]Chen, DefuLi, YongshengYan, Wei On well-posedness of two-component Camassa-Holm system in the critical Besov space. Nonlinear Anal. 120 (2015), 285-298.

[24] Li, YongshengHuang, JianhuaYan, Wei The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity. J. Differential Equations 259(2015), no. 4, 1379-1408. 

[25]Zhao, YongyeLi, YongshengYan, Wei The global weak solutions to the Cauchy problem of the generalized Novikov equation. Appl. Anal. 94 (2015), no. 7, 1334-1354. 

[26] Yan, WeiLi, Yongsheng The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space. Ann. Inst. H. Poincaré Anal. Non Linéaire32 (2015), no. 2, 443-469.

[27] Chen, DefuLi, YongshengYan, Wei On the Cauchy problem for a generalized Camassa-Holm equation. Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 871-889.

[28] Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation. Appl. Anal. 93 (2014), no. 7, 1358–1381. 

[29] Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation in Besov space. J. Differential Equations 256 (2014), no. 8,2876-2901.

[30]Zhao, YongyeLi, YongshengYan, Wei Local well-posedness and persistence property for the generalized Novikov equation. Discrete Contin. Dyn. Syst. 34 (2014),no. 2, 803-820. 

[31]Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the Novikov equation. NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 1157-1169.

[32]Yan, WeiLi, YongshengLi, Shiming Sharp well-posedness and ill-posedness of a higher-order modified Camassa-Holm equation. Differential Integral Equations 25(2012), no. 11-12, 1053–1074. 

[33]Yan, WeiLi, Yongsheng Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation. Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 2, 710–716. 

[34] Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the integrable Novikov equation. J. Differential Equations 253 (2012), no. 1, 298-318. 

[35]Yan, WeiLi, YongshengZhang, Yimin Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75 (2012), no. 4, 2464-2473.

[36]Yan, WeiLi, YongshengYang, Xingyu The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity. Math. Comput. Modelling 54 (2011), no. 5-6, 1252-1261.

[37] Yan, WeiLi, Yongsheng Ill-posedness of Kawahara equation and Kaup-Kupershmidt equation. J. Math. Anal. Appl. 380 (2011), no. 2, 486-492.

[38]Yan, WeiLi, Yongsheng The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math. Methods Appl. Sci. 33 (2010), no. 14, 1647-1660. 

[39]Li, YongshengYan, WeiYang, Xingyu Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity. J. Evol. Equ. 10 (2010), no. 2, 465-486. 


Baidu
map