闫 威 博士
发布时间:2014-03-14浏览次数:15786



闫威教授 博士生导师
电子邮件:011133@htu.edu.cn
通信地址: 数学与信息科学学院
邮  编:453007




个人简历

教育经历:

2002—2006毕业于南阳师范学院,获得理学学士学位;

2006—2011硕博连读于华南理工大学,获得理学博士学位。

工作经历:

2011.7— 2013.9, betway官方app 数学与信息科学学院,讲师;

2013.10—2020.3, betway官方app 数学与信息科学学院,副教授(其间:2016.09—2017.09,国家公派访问学者,访问美国伊利诺伊理工大学应用数学系)

2020.4-至今 , betway官方app 数学与信息科学学院,教授



研究领域

偏微分方程,调和分析,随机偏微分方程,初值随机化


教学工作

主讲本科生课程:《线性代数 》、《高等数学》、《专业英语》、《数学物理方法》、《数学物理方程》、《常微分方程》

主讲研究生课程:《偏微分方程》、《调和分析》


奖励与荣誉




2014,荣获2012-2014年度betway官方app 优秀教师称号

2014,荣获betway官方app2014年度校骨干教师称号

2016,荣获betway官方app 优秀实习指导教师称号

2019,荣获betway官方app2017-2018年度文明教师称号

2020,荣获betway官方app 优秀共产党员



科研项目


1.国家自然科学基金, Camassa-Holm型方程解的整体存在性和爆破性研究,2013.01-2013.12,主持

2.国家自然科学基金, 水波中某些非线性色散方程的适定性研究,2015.01-2017.12, 主持

3.国家自然科学基金,KP型方程和Ostrovsky型方程低正则性解的研究,2018.01-2021.12,主持

4.国家留学基金委项目,色散波方程的初值随机化,2016.09-2017.09,主持.

5.河南省骨干教师项目,高阶薛定谔方程的柯西问题的研究,2018.1-2020.12,主持



论文著作

[1]Yan, Wei;Zhang, Qiaoqiao;Zhang, Haixia;Zhao, LuThe Cauchy problem for the rotation-modified Kadomtsev-Petviashvili type equation.J. Math. Anal. Appl.489 (2020), no. 2,124198, 37 pp.

[2]Yan, Wei;Li, Yongsheng;Huang, Jianhua;Duan, JinqiaoThe Cauchy problem for a two-dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces.Anal. Appl. (Singap.)18 (2020), no. 3,469-522.

[3]Yan, Wei;Yang, Meihua;Duan, JinqiaoWhite noise driven Ostrovsky equation.J. Differential Equations267 (2019), no. 10,5701-5735.

[4]Yan, Wei;Li, Yongsheng;Zhai, Xiaoping;Zhang, YiminThe Cauchy problem for higher-order modified Camassa-Holm equations on the circle.Nonlinear Anal.187 (2019), 397–433.

[5]Yan, Wei;Zhang, Qiaoqiao;Zhao, Lu;Zhang, HaixiaThe local well-posedness and the weak rotation limit for the cubic Ostrovsky equation.Appl. Math. Lett.96 (2019), 147-152.

[6]Fan, Lili;Yan, WeiThe Cauchy problem for shallow water waves of large amplitude in Besov space.J. Differential Equations267 (2019), no. 3,1705-1730.

[7]Fan, Lili;Yan, WeiOn the weak solutions and persistence properties for the variable depth KDV general equations.Nonlinear Anal. Real World Appl.44 (2018), 223-245.

[8]Yan, Wei;Li, Yongsheng;Huang, Jianhua;Duan, JinqiaoThe Cauchy problem for the Ostrovsky equation with positive dispersion.NoDEA Nonlinear Differential Equations Appl.25(2018), no. 3,Paper No. 22, 37 pp.

[9]Zhai, Xiaoping;Li, Yongsheng;Yan, WeiGlobal well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations.Anal. Appl. (Singap.)16(2018), no. 3,363-405.

[10]Wang, JunFang;Yan, WeiThe Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion.Nonlinear Anal. Real World Appl.43 (2018), 283–307.

[11]Ren, Yuanyuan;Li, Yongsheng;Yan, WeiSharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation.Commun. Pure Appl. Anal.17(2018), no. 2,487-504.

[12]Jiang, Minjie;Yan, Wei;Zhang, YiminSharp well-posedness of the Cauchy problem for the higher-order dispersive equation.Acta Math. Sci. Ser. B (Engl. Ed.)37 (2017), no. 4,1061-1082.

[13]Zhai, Xiaoping;Li, Yongsheng;Yan, WeiGlobal solution to the 3-D density-dependent incompressible flow of liquid crystals.Nonlinear Anal.156 (2017), 249-274.

[14]Yan, Wei;Li, Yongsheng;Zhai, Xiaoping;Zhang, YiminThe Cauchy problem for the shallow water type equations in low regularity spaces on the circle.Adv. Differential Equations22 (2017), no. 5-6,363-402.

[15]Ma, Haitao;Zhai, Xiaoping;Yan, Wei;Li, YongshengGlobal strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces.Z. Angew. Math. Phys.68 (2017), no. 1,Paper No. 14, 37 pp.

[16]Li, Shiming;Li, Yongsheng;Yan, WeiA global existence and blow-up threshold for Davey-Stewartson equations in R3.Discrete Contin. Dyn. Syst. Ser. S9 (2016), no. 6,1899-1912.

[17]Lin, Lin;Lv, Guangying;Yan, WeiWell-posedness and limit behaviors for a stochastic higher order modified Camassa-Holm equation.Stoch. Dyn.16 (2016), no. 6,1650019, 19 pp.

[18]Zhai, Xiaoping;Li, Yongsheng;Yan, WeiWell-posedness for the three dimension magnetohydrodynamic system in the anisotropic Besov spaces.Acta Appl. Math.143(2016), 1-13.

[19]Zhai, Xiaoping;Li, Yongsheng;Yan, WeiGlobal solutions to the Navier-Stokes-Landau-Lifshitz system.Math. Nachr.289 (2016), no. 2-3,377-388.

[20]Li, Shiming;Yan, Wei;Li, Yongsheng;Huang, JianhuaThe Cauchy problem for a higher order shallow water type equation on the circle.J. Differential Equations259 (2015), no. 9,4863-4896.

[21]Zhai, Xiaoping;Li, Yongsheng;Yan, WeiGlobal well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces.J. Math. Anal. Appl.432(2015), no. 1,179-195.

[22]Zhai, Xiaoping;Li, Yongsheng;Yan, WeiGlobal well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces.Commun. Pure Appl. Anal.14 (2015), no. 5,1865–1884.

[23]Chen, Defu;Li, Yongsheng;Yan, WeiOn well-posedness of two-component Camassa-Holm system in the critical Besov space.Nonlinear Anal.120 (2015), 285-298.

[24]Li, Yongsheng;Huang, Jianhua;Yan, WeiThe Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity.J. Differential Equations259(2015), no. 4,1379-1408.

[25]Zhao, Yongye;Li, Yongsheng;Yan, WeiThe global weak solutions to the Cauchy problem of the generalized Novikov equation.Appl. Anal.94 (2015), no. 7,1334-1354.

[26]Yan, Wei;Li, YongshengThe Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space.Ann. Inst. H. Poincaré Anal. Non Linéaire32 (2015), no. 2,443-469.

[27]Chen, Defu;Li, Yongsheng;Yan, WeiOn the Cauchy problem for a generalized Camassa-Holm equation.Discrete Contin. Dyn. Syst.35 (2015), no. 3,871-889.

[28]Yan, Wei;Li, Yongsheng;Zhang, YiminThe Cauchy problem for the generalized Camassa-Holm equation.Appl. Anal.93 (2014), no. 7,1358–1381.

[29]Yan, Wei;Li, Yongsheng;Zhang, YiminThe Cauchy problem for the generalized Camassa-Holm equation in Besov space.J. Differential Equations256 (2014), no. 8,2876-2901.

[30]Zhao, Yongye;Li, Yongsheng;Yan, WeiLocal well-posedness and persistence property for the generalized Novikov equation.Discrete Contin. Dyn. Syst.34 (2014),no. 2,803-820.

[31]Yan, Wei;Li, Yongsheng;Zhang, YiminThe Cauchy problem for the Novikov equation.NoDEA Nonlinear Differential Equations Appl.20 (2013), no. 3,1157-1169.

[32]Yan, Wei;Li, Yongsheng;Li, ShimingSharp well-posedness and ill-posedness of a higher-order modified Camassa-Holm equation.Differential Integral Equations25(2012), no. 11-12,1053–1074.

[33]Yan, Wei;Li, YongshengIll-posedness of modified Kawahara equation and Kaup-Kupershmidt equation.Acta Math. Sci. Ser. B (Engl. Ed.)32 (2012), no. 2,710–716.

[34]Yan, Wei;Li, Yongsheng;Zhang, YiminThe Cauchy problem for the integrable Novikov equation.J. Differential Equations253 (2012), no. 1,298-318.

[35]Yan, Wei;Li, Yongsheng;Zhang, YiminGlobal existence and blow-up phenomena for the weakly dissipative Novikov equation.Nonlinear Anal.75 (2012), no. 4,2464-2473.

[36]Yan, Wei;Li, Yongsheng;Yang, XingyuThe Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity.Math. Comput. Modelling54 (2011), no. 5-6,1252-1261.

[37]Yan, Wei;Li, YongshengIll-posedness of Kawahara equation and Kaup-Kupershmidt equation.J. Math. Anal. Appl.380 (2011), no. 2,486-492.

[38]Yan, Wei;Li, YongshengThe Cauchy problem for Kawahara equation in Sobolev spaces with low regularity.Math. Methods Appl. Sci.33 (2010), no. 14,1647-1660.

[39]Li, Yongsheng;Yan, Wei;Yang, XingyuWell-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity.J. Evol. Equ.10 (2010), no. 2,465-486.


关 闭
betway官方app 数学与信息科学学院 中国河南省新乡市建设东路46号
邮政编码:453007 电话:0373-3326148 E-mail:math@htu.cn
版权所有©2010 all rights reserved.
Baidu
map