丙型肝炎病毒感染流行病学模型的全局动态
摘要:
主要研究了具有标准发生率的丙型肝炎流行病动力学模型.通过构造适当的Lyapunov函数,得到模型无病平衡点的全局稳定性以及特定条件下地方病平衡点的全局稳定性,即如果R0≤1,模型的无病平衡点是全局渐近稳定的;如果R0>1且μ=0,则地方病平衡点是全局渐近稳定的.
The epidemiological dynamics model of hepatitis C with standard incidence was mainly studied. By constructing the appropriate Lyapunov functions, the global stability of the model’s disease-free equilibrium point and endemic equilibrium point under certain conditions are obtained, that is, if the basic reproductive number R0≤1, the disease-free equilibrium of the model is globally asymptotically stable;if R0>1 and μ=0, the endemic equilibrium of the model is globally asymptotically stable.
作者:
崔景安 冯振洲 郭松柏
Cui Jingan;Feng Zhenzhou;Guo Songbai(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)
机构地区:
北京建筑大学理学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2022年第2期1-6,F0002,共7页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(11871093 11901027) 中国博士后科学基金(2021M703426) 北京建筑大学建大英才资助项目(JDYC20200327).
关键词:
丙肝 基本再生数 LYAPUNOV函数
hepatitis C basic reproductive number Lyapunov function
分类号:
O175.13 [理学—基础数学]