具有恐惧效应和食饵避难的时滞捕食模型的稳定性

浏览次数: 12
  • 分享到:

摘要:

考虑恐惧效应和食饵避难,研究了具有阶段性结构和时滞的Crowley-Martin型捕食模型.首先分析了平衡点的存在性;接着通过对特征方程根的讨论以及构造Lyapunov函数得到了边界平衡点满足局部和全局渐近稳定性的条件;然后,研究了时滞对内部平衡点稳定性的影响,分析了系统在内部平衡点处Hopf分支的存在性;最后,通过MATLAB数值模拟对结果进行了验证.

A delayed stage structure predator-prey model with Crowley-Martin type functional response incorporating prey refuge and fear effect was discussed.Firstly,the existence of equilibria was analyzed.Secondly,the conditions that the boundary equilibrium point satisfy the local and global asymptotically stability was obtained by discussing the roots of the characteristic equations and constructing Lyapunov function.Then,the influence of the time delay on the stability of the internal equilibrium point is studied,and the existence of the Hopf bifurcation at the internal equilibrium point of the system is analyzed.Finally,the results are verified by MATLAB numerical simulation.

作者:

王呈祥 胡志兴

Wang Chengxiang;Hu Zhixing(School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China)

机构地区:

北京科技大学数理学院

出处:

《betway官方app 学报:自然科学版》 CAS 北大核心 2021年第4期10-17,共8页

基金:

国家自然科学基金(11471034)。

关键词:

恐惧效应 食饵避难 时滞 稳定性 HOPF分支

fear effect prey refuge time delay stability Hopf bifurcation

分类号:

O175.13 [理学—基础数学]


具有恐惧效应和食饵避难的时滞捕食模型的稳定性.pdf

Baidu
map