基于RSSI的四边测距井下人员定位系统

浏览次数: 11
  • 分享到:

摘要:

针对煤矿井下人员定位不精确的问题,设计了基于四边测距算法的井下定位系统.该系统采用ZigBee技术,由CC2530为主控芯片的无线传感器网络组成.定位模块中,传感器节点以Mesh网络拓扑结构组成无线传感网络,具有信息采集传输和定位的功能.定位算法采用不同于传统三边测距算法的四边测距定位算法,该算法首先利用四边测距模型选取出四个信标节点,然后利用加权均值模型对同一节点采集到的接收信号强度指示(RSSI)值进行数据处理,最后将RSSI值转化的距离的平方作为加权因子求出未知节点位置坐标.实验结果表明,该四边测距定位系统较传统三边测距定位系统更具有优势,具有较高定位精度,且能实时定位.

Aiming at the problem of inaccurate personnel positioning in coal mine,a mine positioning system based on quadrilateral ranging algorithm is designed.The system adopts ZigBee technology and consists of wireless sensor network with CC2530 as the main control chip.In the localization module,the sensor node is composed of a mesh network topology,which has the function of information collection,transmission and positioning.Firstly,The positioning algorithm adopts a four-sided ranging positioning algorithm which is different from the traditional three-sided ranging algorithm.The algorithm firstly selects four beacon nodes with the four-sided ranging model.Then USES the weighted mean model to process the RSSI value collected from the same node.Finally,the square of the distance converted from the RSSI value is used as the weighting factor to obtain the unknown node location coordinates.The four-side ranging positioning system has more advantages than the traditional three-side ranging positioning system with higher positioning accuracy and real-time positioning.

作者:

詹华伟 王良源 陈思 史水娥

Zhan Huawei;Wang Liangyuan;Chen Si;Shi Shuie(College of Electronic and Electrical EngineeringHenan Key Laboratory of Optoelectronic Sensing Integrated Application,Henan Normal University,Xinxiang 453007,China)

机构地区:

betway官方app 电子与电气工程学院河南省光电传感集成应用重点实验室

出处:

《betway官方app 学报:自然科学版》 CAS 北大核心 2021年第4期53-59,共7页

基金:

国家自然科学基金(61077037) 河南省科技攻关计划项目(172102210046) 河南省高等学校重点科研项目基础研究项目(19B510006).

关键词:

接收信号强度指示 ZigBee CC2530 MESH网络 四边测距算法 实时定位

RSSI ZigBee CC2530 Mesh network quadrilateral ranging algorithm real time positioning

分类号:

TP301 [自动化与计算机技术—计算机系统结构] TP303 [自动化与计算机技术—计算机系统结构]


基于RSSI的四边测距井下人员定位系统.pdf


Baidu
map