基于集成学习的微博用户转发行为预测

浏览次数: 12
  • 分享到:

摘要:

为了提高微博用户转发行为预测的精度,提出一种有效的基于集成学习的微博用户转发行为预测算法.首先,对影响用户转发的各种特征进行综合分析,提取出用户属性、社交关系、微博内容等影响用户转发行为的特征;然后,采用Logistic回归、支持向量机与BP(BackPropagation)神经网络等机器学习算法对用户转发行为进行预测;最后,利用加权投票法的集成学习方法对多个预测结果进行融合.实验结果表明,相对于BP神经网络算法,在综合评价性能的F1度量值上,集成学习算法有1.5%的性能提升.

In order to improve the accuracy of predicting userretweet behaviors in a micorblog social network,the paper proposes an effective method based on Ensemble Learning.Firstly,the papercomprehensively analyzes the performances of various features that affect user retweetbehaviors,such asuser attributes,social relationships and microblog contents,et al.Based on the extracted features,the propsed method respectively predictsuser retweetbehaviors with Logistic regression,SVM(Support Vector Machine)and BP(Back Propagation)neural network,and incorporates the corresponding results in a weighted voting manner based on Ensemble Learning.The experimental results show that the propsed method has a performance improvement of 1.5% on F1 metric of the overall evaluation,compared with the BP neural network.

作者:

张效尉 王伟 秦东霞

机构地区:

周口师范学院网络工程学院

出处:

《betway官方app 学报:自然科学版》 CAS 北大核心 2018年第2期111-116,共6页

基金:

国家自然科学基金(U1504602) 河南省科技攻关项目(172102210089 162102210396) 河南省自然科学基金研究项目(152300410129) 河南省高等学校重点科研项目(15A520125 17A520019 15A520114)

关键词:

新浪微博 转发行为预测 集成学习 社交关系

sinamicroblog retweetbehavior prediction ensemble learning socialrelation

分类号:

TP391.1 [自动化与计算机技术—计算机应用技术]


基于集成学习的微博用户转发行为预测.pdf

Baidu
map