与年龄相关的随机种群系统分裂倒向Euler法的几乎必然指数稳定性
摘要:
将分裂倒向Euler法应用于随机种群系统.在一定的假设条件下,首先给出解的存在唯一性,再利用离散半鞅收敛定理,建立了分裂倒向Euler法对应数值解的几乎必然指数稳定性的判定准则.最后,通过数值例子对所给的结论进行了验证.
In this paper, the split-step backward Euler method with high precision is applied to stochastic age-structured population system. Under the certain assumed condition , the existence and uniqueness of the solution are given. Using discrete semi-martingale convergence theorem, some criterion are established for almost sure exponential stability of numerical solution corresponding to split-step backward Euler method. Finally, we give a stochastic age-structured population equation example to conclude this research. Under certain assumptions, the existence and uniqueness of the solution are given, and the convergence theorem of the discrete semi martingale is obtained.
作者:
申芳芳 辛志贤 张启敏 哈金才
Shen Fangfang Xin Zhixian Zhang Qimin Ha Jincai(Business Departments Guizhou University of Finance and Economics, Iluishui 550600,China School of Mathematics and Information Science, North University for Nationalities,Yinchuan 750021, China)
机构地区:
贵州财经大学商务学院 北方民族大学数学与信息科学学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2017年第2期8-13,共6页
基金:
国家自然科学基金(11461053 11661064 11261043) 宁夏回族自治区自然科学基金(NZ15104)
关键词:
随机种群系统 指数稳定 分裂倒向Euler法 半鞅收敛定理
stochastic population system exponential stability split-step backward Euler method semi-martingale con-vergence theorem
分类号:
O175.1 [理学—基础数学]