偏缠绕模的Maschke型定理

浏览次数: 10
  • 分享到:

摘要:

设(A,C,ψ),(A′,C′,ψ′)为两偏缠绕结构,给定α:A→A′和γ:C→C′.引入两个偏缠绕模范畴M(ψ)_A^C和M(ψ′)_A′~C′的导出函子F,并证明此导出函子F有右伴随函子:G:M(ψ′)_A′~C′→M(ψ)_A^C.最后,引入偏正规化余积分θ:C→AA的概念并证明了偏缠绕模范畴的Maschke型定理,也就是说,假设存在偏正规化余积分,给定M_A^C(ψ)中态射f:M→N,则有当单(满)态射f看作C-余模态射可分裂时,必有单(满)态射f在M_A^C(ψ)中可分裂.

Let(A,C,ψ),(A′,C′,ψ′)be two partial entwining structures.Givenα:A→A′andγ:C→C′,we define an induction functor Fbetween the category M(ψ′)_AC of all partial entwined modules and the category M(ψ′)_A′C′,and we prove that this functor has a right adjoint G:M(ψ′)_A′C′ →M(ψ)_AC.Finally,we introduce the definition of partial conormalized cointegral θ:C→AAand prove a Maschke type theorem for the category of partial entwined modules,that is,suppose that there exists a partial normalized cointegral.Then f:M→Nin M_AC(ψ)has a section(respectively,retraction)if fhas a section(respectively,retraction)as a C-comodule morphism.

作者:

郭双建 董丽红

机构地区:

贵州财经大学数学与统计学院 betway官方app 数学与信息科学学院

出处:

《betway官方app 学报:自然科学版》 CAS 北大核心 2016年第2期29-33,共5页

基金:

国家自然科学基金(11371088) 国家数学天元基金(11426073) 河南省基础与前沿技术研究计划(152300410086) 江苏省自然科学基金(BK2012736) 贵州省科技厅基金项目(2014GZ81365)

关键词:

偏缠绕模 伴随函子 偏正规化余积分 MASCHKE型定理

partial entwined modules adjoint functor partial normalized cointegral Maschke type theorem

分类号:

O153.3 [理学—基础数学]


偏缠绕模的Maschke型定理.pdf

Baidu
map