双相滞热传导方程的一个非协调混合有限元方法
摘要:
针对拟线性双相滞热传导方程,利用非协调E_1Qrot元与零阶Raviart-Thomas(即Q10×Q01)元,建立了最低阶混合有限元逼近格式.基于E_1Qrot元的两个特殊性质:1)相容误差比插值误差高一阶;2)Ritz投影算子与插值算子等价,以及零阶Raviart-Thomas元的高精度估计结果,利用导数转移和插值后处理技巧,在半离散格式下,分别导出了原始变量u在H^1模及中间变量=▽u在L2模意义下的O(h^2)阶超逼近与整体超收敛结果.其中,h为剖分参数.同时对其全离散格式,得到了O(h^2+τ~2)阶超逼近结果.
With help of nonconforming E_1(Qrot) and zero order Raviart-Thomas(that is,Q_(10)×Q_(01))elements,the lowest order mixed finite elements approximation scheme for quasi-conforming dual-phase-lagging heat conduction equations is proposed.With two special properties of E_1(Qrot)element:1)the consistency error is one order higher than its interpolation error;2)the Ritz-projection operator is equivalent to its interpolation operator and the high accuracy estimating results of zero order Q_(10)×Q_(01) element,the O(h2)order super-close and super-convergence results of original variable uin H1 norm and flux variable=▽u in L2 norm are deduced respectively for semi-discrete scheme through derivative transfer and interpolation post-processing skills.Here,his the mesh parameter.At the same time,the super-close results of order O(h2+τ2)are obtained for the fully-discrete schem.
作者:
刘倩 石东洋
机构地区:
郑州大学数学与统计学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2016年第2期15-21,共7页
基金:
国家自然科学基金(10971203 11271340)
关键词:
双相滞热传导方程 非协调有限元 混合有限元格式 超逼近 超收敛
dual-phase-lagging heat conduction equations nonconforming finite element mixed finite element scheme super-close super-convergence
分类号:
O242.21 [理学—计算数学]