三维Brinkman-Forchheimer方程解的渐近稳定性
摘要:
研究了三维有界区域上Brinkman-Forchheimer方程全局解的渐近稳定性.首先讨论了BrinkmanForchheimer方程对应的广义稳态椭圆方程解的存在唯一性,接着对这两种方程解之间的收敛性进行了讨论,最后分别在(L2(Ω))3和(H01(Ω))3中证明了Brinkman-Forchheimer方程强解关于初值和系数的连续依赖性.
In this paper,we study the asymptotic stability of the global solution of the three-dimensional Brinkman-Forchheimer equation on bounded domains.Firstly,we discuss the uniqueness of the solution of the generalized steady state elliptic equation corresponding to the Brinkman-Forchheimer equation.Then,we get the convergence of solutions between Brinkman-Forchheimer equation and its generalized steady state elliptic equation.Finally,we prove the continuous dependence of strong solution of Brinkman-Forchheimer equation on the initial value and the coefficient in(L2(Ω))3and(H10(Ω))3.
作者:
宋雪丽 谢晓甜
Song Xueli;Xie Xiaotian(College of Science,Xi'an University of Science and Technology,Xi'an 710054,China)
机构地区:
西安科技大学理学院
引用本文:
《betway官方app 学报(自然科学版)》 CAS 2024年第1期60-66,共7页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(12001420) 陕西省教育厅专项基金(17JK0505).
关键词:
Brinkman-Forchheimer方程 弱解 渐近稳定性
Brinkman-Forchheimer equations weak solution asymptotic stability
分类号:
O175.2 [理学—基础数学]