执行器幅值与速率约束下线性系统的事件触发控制
摘要:
传统的网络化控制系统中,控制任务通常以周期的方式执行.为了节约网络通信资源,一些学者提出了事件触发控制.另一方面,由于物理限制或出于安全考虑,几乎所有反馈控制系统都会受到饱和约束.饱和的存在是系统性能退化甚至不稳定的主要因素.研究了受到执行器幅值与速率饱和约束的线性系统的事件触发控制问题.首先,一阶系统用来表示执行器的幅值和速率限制.然后,引入了两个推广的扇区条件来处理由饱和引起的死区非线性.接下来,通过利用Lyapunov稳定性理论,获得了确保闭环系统区域渐近稳定的充分条件.通过限制稳定域的最小范围,提出了事件触发率的最优化问题.所获得的结果用线性矩阵不等式表示,能够方便地利用MATLAB中的LMI工具箱进行求解.最后,数值例子和仿真验证了所得结果的有效性.
In traditional networked control systems,control tasks are usually executed in a periodic way.On the other hand,due to physical constraints or for security considerations,almost all feedback control systems are subject to saturation constraints.The existence of saturations is the main factor of system performance degradation and even instability.This paper investigates the event-triggered control problem for linear systems subject to saturation constraints of actuator amplitude and rate.Firstly,the first-order systems are utilized to represent the actuator amplitude and rate constraints.Then,two generalized sector conditions are introduced to deal with the dead-zone nonlinearities induced by saturations.Next,by utilizing Lyapunov stability theory,a sufficient condition is obtained to ensure the regional asymptotic stability of the closed-loop systems.The optimization problem of event-triggering rate is proposed by restricting the minimum range of the stability region.The result obtained in this paper is expressed by linear matrix inequalities,which can be conveniently solved by using the LMI toolbox in Matlab.Finally,numerical examples and simulations verify the effectiveness of the obtained result.
作者:
贾金泽 陈永刚 白圆圆
Jia Jinze;Chen Yonggang;Bai Yuanyuan(School of Management,Henan Institute of Technology,Xinxiang 453003,China;School of Mathematical Sciences,Henan Institute of Science and Technology,Xinxiang 453003,China;Henan Engineering and Technology Research Center of Digital Agriculture,Henan Institute of Science and Technology,Xinxiang 453003,China)
机构地区:
河南工学院管理学院 河南科技学院数学科学学院 河南科技学院河南省数字农业工程技术研究中心
引用本文:
《betway官方app 学报(自然科学版)》 CAS 北大核心 2024年第3期106-112,共7页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(62273132) 河南省科技攻关项目(232102320338).
关键词:
线性系统 事件触发控制 幅值约束 速率约束
linear systems event-triggered control amplitude constraints rate constraint
分类号:
O231 [理学—运筹学与控制论]