联合有限元法和蒙特卡罗模拟的颅骨对光热影响

浏览次数:10
  • 分享到:

摘要:

利用 MCmatlab程序构建了小鼠在有颅骨和无颅骨情况下的脑部光热模型,联合蒙特卡罗方法和有限元法来研究颅骨对脑部光热效应的影响。利用蒙特卡罗方法模拟大量光子在不同脑组织中的传播规律;利用有限元法计算每个单元对光能量的吸收,进而获得脑组织的温度分布。仿真结果表明:在有颅骨的情况下,光在穿过头皮和颅骨时会发生严重的吸收和散射,只有小部分光子能够穿过头皮和颅骨被血管和灰质吸收,光热效应较弱;在无颅骨的情况下,绝大多数的光能够入射到灰质中,血管能够吸收大部分的能量而导致温度上升显著,血管温度上升约0.2 ℃,光热效应明显。

In this study, MCmatlab was used to construet a photothermal model of mouse brain with and without skull,and the effeet of skull on brain photothermal effeet was studied by Monte Carlo method and finite clement method.  Monte Carlo method can be used to simulate the propagation of a large number of photons in different brain tissues. Then the finite element method is used to calculate the absorption of light energy by each unit, and the temperature distribution of brain tisue is ob-tained. The simulation results show that in the case of skull, the light will be absorbed and seatered seriously through the seap and skull. Only a small part of the photons can be absorbed by blood vessels and gray matter through the sealp and skull, and the photothermal effect is very weak, In  the absence of skull, most of the light can enter the gray matter, and the blood vessels can absorb most of the energy, resulting in a significant inerease in temperature.Compared with the temperature rise on the blood vessels with skull, the temperature rise on the blood vessels without skull inereases by 0.2 ℃, and the photothermaleffect is obvious.

作者:

宋贤林,游博康,李思行

Song Xianlin, You Bokang,Li Sihang

机构地区:

南昌大学信息工程学院;际銮书院

引用本文:

宋贤林,游博康,李思行。联合有限元法和蒙特卡罗模拟的颅骨对光热影响[J].betway官方app 学报(自然科学版),2024,52(6):107-112.(SongXianlin,YouBokang,LiSihang.Effectofskullonphotothermaleffectbasedon

MonteCarlomethodandfiniteelementmethod[J].JournalofHenanNormalUniversity(NaturalScienceEdi tion),2024,52(6):107-112.DOI:10.16366/j.cnki.1000-2367.2023.05.11.0001.

基金:

国家自然科学基金;浙江省自然科学基金

关键词:

蒙特卡罗方法;有限元法;颅骨;光热效应;脑成像

Monte Carlo method; finite element method;skull;photothermal effect;brain imaging

分类号:

Q63   


Effeet of skull on photothermal effeet based on Monte Carlo methodand finite element method.pdf

Baidu
map