A moderate deviation principle of 2D stochastic Cahn-Hilliard-Navier-Stokes equation
摘要:
有界区域上带乘性噪声的随机Cahn-Hilliard-Navier-Stokes方程是描述等温不可压缩二元流体运动的一类重要数学模型.由于乘性噪声的扰动,使得对方程解的研究变得复杂.通过构建新的近似系统和运用经典的弱收敛方法,证明了该系统的中偏差原理.
This paper considers a stochastic Cahn-Hilliard-Navier-Stokes equation with multiplicative noise in a bounded domain in R2,which is an important mathematical model to describe the motion of isothermal incompressible binary fluid.Due to perturbing of multiplicative noise,the system becomes more complicated.By constructing a new approximate system and using the classical weak convergence method,the moderate deviation principle of the system is proved.
作者:
陈光淦 王悦阳 杨敏
Chen Guanggan;Wang Yueyang;Yang Min(School of Mathematical Sciences,Visual Computing and Virtual Reality Key Labora Key Lab,Sichuan Normal University,Chengdu 610068,China)
机构地区:
四川师范大学数学科学学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2022年第6期79-86,共8页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(12171343) 四川省科技计划(2022JDTD0019).
关键词:
中偏差原理 随机Cahn-Hilliard-Navier-Stokes方程 弱收敛方法
moderate deviation principle stochastic Cahn-Hilliard-Navier-Stokes equation weak convergence method
分类号:
O175.2 [理学—基础数学]