Vector rogue waves in a cold atomic gas via electromagnetically induced transparency
摘要:
光学怪波,类比于海洋中的怪波,即具有极高振幅的光学波.非线性薛定谔方程可以作为一种简单的模型来研究光学怪波.多分量耦合的非线性薛定谔方程可研究不同偏振分量的矢量怪波.提出在冷原子体系利用电磁诱导透明(Electromagnetically Induced Transparency,EIT)实现矢量光学亮-亮怪波、暗-暗怪波和亮-暗怪波,并利用调制不稳定性研究产生光学怪波的产生机制.研究结果有助于深刻理解非线性系统的不稳定性本质和动力学性质,并且在光学信息处理和传输中具有潜在的应用价值.
Optical rogue waves,like strong wave packets that appear in oceans,are giant ones corresponding to large-amplitude.Nonlinear Schrodinger equation is used as a simple model to study optical rogue wave.The multi-component coupled nonlinear Schrodinger equation can be used to study vector rogue waves with different polarization components.We propose to use electromagnetically induced transparency(EIT)to realize vector optical bright-bright rogue waves,dark-dark rogue waves and bright-dark rogue waves in cold atomic system,and to study the mechanism of optical strange rogue by using modulation instability.It will help us to have a better understanding of the nature of instability and dynamics of nonlinear systems.The results obtained may have potential applications in optical information processing and transmission.
作者:
秦璐 冯雪景 蒋亚静 齐文荣 田红娟 赵兴东 夏世强 杨春洁 张计才 高玉峰 朱遵略 刘伍明
Qin Lu;Feng Xuejing;Jiang Yajing;Qi Wenrong;Tian Hongjuan;Zhao Xingdong;Xia Shiqiang;Yang Chunjie;Zhang Jicai;Gao Yufenga;Zhu Zunlue;Liu Wuming(School of Physics,Henan Normal University,Xinxiang 453007,China;School of computer and Information Engineering,Henan Normal University,Xinxiang 453007,China;Laboratory of Condensed Matter Theory and Materials Computation,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China)
机构地区:
betway官方app 物理学院 betway官方app 计算机与信息工程学院 中国科学院物理研究所北京凝聚态物理国家研究中心
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2022年第4期1-7,F0002,共8页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(12074105,12104135,11604086,11704102,11604084) betway官方app 博士启动项目(5101029170846)。
关键词:
超冷原子 光学怪波 电磁诱导透明 调制不稳定性
ultra-cold atom optical rogue waves electromagnetically induced transparency modulation instability
分类号:
O413 [理学—理论物理]