Continuous space-time finite element method for integro-differential equations of parabolic type
摘要:
针对抛物型积分微分方程提出了一种连续时空有限元方法,通过引入时空投影算子,得到了相应的最优误差估计结果.与传统全离散方式不同的是,该方法对时间变量和空间变量同时采用有限元逼近,且无时间离散步长和空间网格尺寸的网格比限制.所得结果对于进一步研究非定常偏微分方程的数值算法具有积极推动作用.
This paper proposes a continuous space-time finite element method for integro-differential equations of parabolic type.By introducing space-time projection operators,some optimal order error estimates are obtained.Differing from the traditional full discrete scheme,this method approximates the time and space variables by finite element method at the same time,which does not to satisfy any limitation of the ratio of the time step length and the space mesh size.The results of this paper has positive effect to promote further researches of numerical methods for parabolic type integro-differential equations.
作者:
曲双红 郭昱杉 关宏波
Qu Shuanghong;Guo Yushan;Guan Hongbo(College of Mathematics and Information Science,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
机构地区:
郑州轻工业大学数学与信息科学学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2022年第3期67-72,共6页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(11501527) 河南省高校青年骨干教师基金(2020GGJS126) 河南省自然科学基金(222300420585).
关键词:
抛物型积分微分方程 时空有限元方法 最优误差估计
integro-differential equations space-time finite element method optimal order error estimates
分类号:
O242.21 [理学—计算数学]