Blow-up solutions for derivative nonlinear Schr dinger equations
摘要:
研究下述导数非线性Schrodinger方程的初边值问题:iφt+αφxx=iβ|φ|2σφx-g(|φ|2)φ,σ1,x∈[a,b],其中α,β为实数,g(·)是实值函数.当α,β,φ0及g(s)满足一定条件时,利用守恒律和修正的virial等式,证明了爆破解的存在性.最后,得到了爆破解的渐近行为等一些性质.
In this paper,we study the blow-up solutions to the following initial boundary value problem of the derivative nonlinear Schrodinger equations,iφt+αφxx=iβ|φ|2σφx-g(|φ|2)φ,σ1,x∈[a,b],whereα,βare real,g(·)is a real function.Under the some appropriate conditions onα,β,φ0 and g(s),we show the existence of the blow-up solutions by conservation laws and modified virial identity.Finally,we investigate asymptotic behavior and other properties of blow-up solutions.
作者:
郑昊昊 李用声
Zheng Haohao;Li Yongsheng(School of Mathematics,South China University of Technology,Guangzhou 510640,China)
机构地区:
华南理工大学数学学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2021年第6期77-81,共5页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(11571118,11971356)。
关键词:
导数非线性Schr dinger方程 爆破解 修正的virial等式
derivative nonlinear Schr dinger equation blow-up solution modified virial identity
分类号:
O175.23 [理学—基础数学]