Global solution of 3D incompressible magnetohydrodynamics equations
摘要:
主要研究带有拉普拉斯耗散和磁扩散的三维磁流体力学系统,在有限能量情形下得到了方程的经典解.选择稳态情形下的Beltrami流作为初值,利用截断函数技术方法和先验估计证明了方程组的整体正则性.
In this paper,a three-dimensional MHD system with both Laplacian dissipation and magnetic diffusion is studied.The classical solutions of the equations are obtained in the case of finite energy.The Beltrami flows in steady state is chosen as the initial value,and the global regularity of the equations for all time is proved by using the cut-off function technique and prior estimation.
作者:
葛玉丽 邵曙光
Ge Yuli;Shao Shuguang(School of Mathematics and Statistics,Nanyang Normal University,Nanyang 473061,China)
机构地区:
南阳师范学院数学与统计学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2021年第5期27-32,共6页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(11771031,11801285) 南阳师范学院科学技术研究重点项目(19031).
关键词:
磁流体方程组 有限能量 整体解 Beltrami流 正则性
magnetohydrodynamics equations finite energy global solution Beltrami flows regularity
分类号:
O175 [理学—基础数学]