Some rigidity results for critical metrics of quadratic curvature functionals on Riemannian manifolds
摘要:
主要研究紧致黎曼流形上有关二次曲率泛函临界度量的刚性结果.使用有关Weyl曲率张量的不等式估计与散度定理,得到了临界度量是Einstein度量以及常截面曲率度量的分类结果.
In this paper,we study some rigidity results for Einstein metrics as the critical points of a family of known quadratic curvature functionals on compact manifolds.Using some estimates with respect to the Weyl curvature tensor and divergence theorems,we obtain that a critcal metric must be Einstein or constant sectional curvature.
作者:
黄广月 陈玉
Huang Guangyue;Chen Yu(College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)
机构地区:
betway官方app 数学与信息科学学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2019年第3期15-20,共6页
基金:
国家自然科学基金(11371018 11671121)
关键词:
临界度量 Cotton张量 EINSTEIN度量
critical metric Cotton tensor Einstein metric
分类号:
O186.12 [理学—基础数学]