Existence and Uniqueness for a Class of Fully Third-Order Two-Point Boundary Value Problems
摘要:
讨论如下完全三阶两点边值问题{-u(t)=f(t,u(t),u′(t),u″(t)),{t∈[0,1],u(0)=u′(0)=u′(1)=0解的存在性与唯一性.其中f(t,x,y,z):[0,1]×R3→R为连续函数.在f(t,x,y,z)关于z满足Nagumo型增长条件下,应用上下解方法与截断技巧,获得了该问题解的存在性和唯一性结果.
In this paper,the existence and uniqueness was discussed for a class of fully third-order two-point boundary value problems,{-u(t)=f(t,u(t),u′(t),u″(t)),{t∈[0,1],u(0)=u′(0)=u′(1)=0,where f(t,x,y,z):[0,1]×R3→Ris continuous and satisfy the Nagumo-type growth condition on z.We obtain the existence and uniqueness result via the lower and upper solution method and a special truncating technique.
作者:
刘爱兰
机构地区:
西北师范大学数学与统计学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2016年第6期24-28,共5页
基金:
国家自然科学基金(11261053) 甘肃省自然科学基金(1208R-JZA129)
关键词:
三阶两点边值问题 上解 下解 NAGUMO条件
Third-order two-point boundary value problems upper solutions lower solutions Nagumo condition
分类号:
O175.8 [理学—基础数学]