Existence and Uniqueness for a Class of Fully Third-Order Two-Point Boundary Value Problems

Number of views: 14
  • 分享到:

摘要:

讨论如下完全三阶两点边值问题{-u(t)=f(t,u(t),u′(t),u″(t)),{t∈[0,1],u(0)=u′(0)=u′(1)=0解的存在性与唯一性.其中f(t,x,y,z):[0,1]×R3→R为连续函数.在f(t,x,y,z)关于z满足Nagumo型增长条件下,应用上下解方法与截断技巧,获得了该问题解的存在性和唯一性结果.

In this paper,the existence and uniqueness was discussed for a class of fully third-order two-point boundary value problems,{-u(t)=f(t,u(t),u′(t),u″(t)),{t∈[0,1],u(0)=u′(0)=u′(1)=0,where f(t,x,y,z):[0,1]×R3→Ris continuous and satisfy the Nagumo-type growth condition on z.We obtain the existence and uniqueness result via the lower and upper solution method and a special truncating technique.

作者:

刘爱兰

机构地区:

西北师范大学数学与统计学院

出处:

《betway官方app 学报:自然科学版》 CAS 北大核心 2016年第6期24-28,共5页

基金:

国家自然科学基金(11261053) 甘肃省自然科学基金(1208R-JZA129)

关键词:

三阶两点边值问题 上解 下解 NAGUMO条件

Third-order two-point boundary value problems upper solutions lower solutions Nagumo condition

分类号:

O175.8 [理学—基础数学]


一类完全三阶两点边值问题解的存在性与唯一性.pdf

Baidu
map