Numerical Method for an Inverse Problem of age-Dependent Population System with Diffusion

Number of views: 12
  • 分享到:

摘要:

研究了一类具有年龄结构的种群扩散系统反问题的数值解.对原系统变形后建立了具有高精度的四阶Pade差分格式来计算种群的密度和扩散系数,该格式的截断误差为O(τ2+h4)并且无条件稳定,所得结果能更准确的描述种群密度和扩散系数.数值算例验证了方法的精确性和可靠性.

Numerical method for an inverse problem of age-dependent population systems with diffusion is studied in this paper. A forth-order Pade numerical algorithm is proposed to calculate the population and the diffusion coefficient after a series of original form changes. The forth-order Pade numerical algorithm is unconditionally stable and has a truncation error of O(r2 +h4). The obtained results can reflect the population and the diffusion coefficient more accurately. Finally, a numerical example is presented to demonstrate the efficiency and accuracy of the numerical method.

作者:

辛志贤 张启敏 哈金才

机构地区:

北方民族大学数学与信息科学学院 宁夏大学数学与计算机学院

出处:

《betway官方app 学报:自然科学版》 CAS 北大核心 2016年第4期27-33,共7页

基金:

国家自然科学基金(11461053 11261043) 宁夏自然科学基金(NZ15104)

关键词:

年龄结构 种群扩散系统 反问题 四阶Pade格式

age-structured population system with diffusion inverse problem forth-order Pade numerical algorithm

分类号:

O193 [理学—基础数学]


具有年龄结构的种群扩散系统反问题的数值解.pdf

Baidu
map