Stability of the Compensated Backward Euler Numerical Solution of Stochastic Age-dependent Capital System
摘要:
介绍了一类与年龄相关的随机固定资产系统补偿倒向Euler数值解法,漂移系数和扩散系数在单边Lipschitz条件和有界条件下,建立了随机固定资产系统补偿倒向Euler数值解均方渐近稳定性的判定准则.最后通过数值算例对本文的结论进行了验证.
In this paper, we introduce a class of compensated backward Euler methods forstochastic age-dependent cap- ital system. Under the one-sided Lipschitz condition on the drift coefficient and the bounded condition on the diffusion coeffi- cients, we obtain the asymptotic mean-square stability of the compensated backward Euler numerical solution of stochastic age- dependent capital system. Finally, an example is given for verifying the algorithm of this paper.
作者:
吕淑婷 张启敏
机构地区:
北方民族大学数学与信息科学学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2016年第3期14-18,84,共6页
基金:
国家自然科学基金(11362001) 宁夏自然科学基金(NZ14109)
关键词:
随机资产系统 补偿倒向Euler法 渐近稳定性
stochastic capital system compensated backward Euler methods asymptotic sthbility
分类号:
O175.1 [理学—基础数学]