On study for the theory of partial differential equations in composite materials
摘要:
在过去的50年,复合材料的发展无疑是现代技术中的一个重要且成功的领域.复合材料通常由基体材料和夹杂材料复合而成.高对比度复合材料在使用过程中,当夹杂彼此靠得很近时,往往会产生电场、磁场或应力场等物理场的集中现象,这是数学物理领域中的一个重要课题.将着重介绍在过去的二十多年弹性复合材料应力集中问题在偏微分方程理论方面取得的一些重要进展和一些待解决的关键问题.
In the past 50 years,the improvement of composite materials is undoubtedly an important and successful field in modern technology.It is composed of the matrix and inclusions.In high contrast composite materials,a high concentration of physical fields such as electric field,magnetic field or stress field will occur when the inclusions are close to each other,which is an important subject in the field of mathematical physics.In this paper,we will focus on the important advances in the theory of partial differential equations and some key open problems for the stress concentration of elastic composite materials in the past 20 years.
作者:
李海刚 徐龙娟
Li Haigang;Xu Longjuan(School of Mathematical Sciences,Key Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing Normal University,Beijing 100875,China;Academy for Multidisciplinary Studies,Capital Normal University,Beijing 100048,China)
机构地区:
北京师范大学数学科学学院 首都师范大学交叉科学研究院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2023年第2期25-31,F0002,共8页
Journal of Henan Normal University(Natural Science Edition)
基金:
国家自然科学基金(11971061).
关键词:
复合材料 拉梅方程组 梯度估计 爆破速度 渐近展示
composite materials Lamésystems gradient estimates blow-up rates asymptotics
分类号:
O175.23 [理学—基础数学] O175.25 [理学—基础数学]