Superconvergence and Extrapolation of Bilinear FiniteElement Method for A kind of Nonlinear Sobolev-Galpern TypeEquations of Moisture Migration
摘要:
主要讨论了一类非线性Sobolev-Galpern型湿气迁移方程的双线性元逼近,利用积分恒等式和平均值技巧,导出了H1模意义下O(h2)阶的超逼近性质.同时借助于插值后处理技术,给出了整体超收敛结果.在此基础上,通过构造合适的外推格式,得到了具有O(h3)阶的近似解.
In this paper, the approximation of bilinear finite element for a kind of nonlinear Soholev-Galpern type equations of moisture migration is discussed. By use of the integral identities and the mean value technique, the superclose property of order O(h2 ) in H1-norm is obtained. A global super-convergence result is derived by interpolatedpost-processing method. Then higher accuracy of order O(h3) for approximation solution is given by constructing a proper extrapolation scheme.
作者:
白秀琴 屈聪
机构地区:
平顶山学院数学与信息科学学院
出处:
《betway官方app 学报:自然科学版》 CAS 北大核心 2015年第3期28-33,42,共7页
基金:
国家自然科学基金(11271340)
关键词:
非线性湿气迁移方程 双线性元 超收敛 外推
nonlinear Sobolev-Galperntype equations bilinear element superconvergence extrapolation
分类号:
O242.21 [理学—计算数学]